Approximate velocity formula over mobile sediment bed induced by velocity-skewed wave and current

Author(s):  
Xin Chen ◽  
Minghong Chen ◽  
Jingkai Wu ◽  
Haifei Liu ◽  
Chen Yang
Keyword(s):  
1996 ◽  
Vol 33 (9) ◽  
pp. 215-220 ◽  
Author(s):  
Chandramouli Nalluri ◽  
Aminuddin Ab. Ghani

A list of available codes of practice for self-cleansing sewers is presented and a review of appraisals of minimum velocity criterion is summarised. Comparisons of newly developed “minimum velocity” criteria and “minimum shear stress” criterion are presented. Some design charts are also given. These charts are applicable to non-cohesive sediments (typically storm sewers). It appears that sediment size and concentration need to be taken into account, and that a limited depth of sediment bed is recommended for large pipes (diameters > 1000 mm) to maximise their transport capacity.


1992 ◽  
Vol 25 (8) ◽  
pp. 115-122 ◽  
Author(s):  
G. S. Perrusquía

An experimental study of the transport of sediment in a part-full pipe was carried out in a concrete pipe. The experiments were confined to bedload transport. The purpose of this study was to analyze the flow conditions that characterize the stream traction in pipe channels and their relationship to flow resistance and sediment transport rate. Three procedures used in this kind of experimental study were tested and found valid: 1) the vertical velocity distribution near the sediment bed can be described by the velocity-defect law, 2) the side wall elimination procedure can be used to compute the hydraulic radius of the sediment bed, and 3) the critical shear stress of the sediment particles can be obtained by using Shields' diagram. A relationship to estimate bedload transport, based on dimensional analysis, was proposed. This was expressed in terms of both flow and particle parameters as well as geometric factors. Further experimental work is recommended before this relationship can be fully incorporated in a simulation model for the analysis of storm sewers.


1995 ◽  
Vol 31 (7) ◽  
pp. 61-68 ◽  
Author(s):  
E. Ristenpart ◽  
R. M. Ashley ◽  
M. Uhl

Studies in Germany, Belgium, France and Scotland have revealed that there are significant solids transport gradients in the depth of foul and combined sewage flows. Continuous field observations of changes in depths of sediment deposits in combined sewers have also indicated that there is an interaction between the erosion and deposition processes and changes in the mass transport of solids in regions in the overlying flow. A fuller understanding of the interactive phenomena is essential for both sewer sediment management and the minimization of associated pollution from wash-out of solids via CSOs. The paper presents results from the detailed studies in Hildesheim, Germany and those carried out in Dundee, Scotland, investigating the heterogeneity of solids movement with regard to gross solids, erosion of sewer sediments and their interactions with the suspended transport phases and the layer of very dense fluid found to be transported under certain circumstances, near the sediment bed or sewer invert (traditionally called ‘bed-load’).


2016 ◽  
Vol 64 (3) ◽  
pp. 252-260 ◽  
Author(s):  
Isa Ebtehaj ◽  
Hossein Bonakdari ◽  
Amir Hossein Zaji ◽  
Charles Hin Joo Bong ◽  
Aminuddin Ab Ghani

Abstract A vital topic regarding the optimum and economical design of rigid boundary open channels such as sewers and drainage systems is determining the movement of sediment particles. In this study, the incipient motion of sediment is estimated using three datasets from literature, including a wide range of hydraulic parameters. Because existing equations do not consider the effect of sediment bed thickness on incipient motion estimation, this parameter is applied in this study along with the multilayer perceptron (MLP), a hybrid method based on decision trees (DT) (MLP-DT), to estimate incipient motion. According to a comparison with the observed experimental outcome, the proposed method performs well (MARE = 0.048, RMSE = 0.134, SI = 0.06, BIAS = -0.036). The performance of MLP and MLP-DT is compared with that of existing regression-based equations, and significantly higher performance over existing models is observed. Finally, an explicit expression for practical engineering is also provided.


1992 ◽  
Vol 25 (8) ◽  
pp. 71-82 ◽  
Author(s):  
M. Verbanck

Although sewer sediments are now widely recognized as a major source of misfunction of urban drainage systems (for both hydraulic and environmental considerations), it is still too infrequent that priority of research activities in this area is given to field studies. The measuring campaigns conducted since 1986 in the drainage system of Brussels-North have been focused on sedimentation processes in the major sewer lines. There is an obvious distinction to be made between solids constituting the sediment bed of a man-entry sewer, which are relevant for its hydraulic capacity, and the ones contributing to the pollutional impact of CSOs upon receiving waters. The material which is removed several times a year from the main trunk sewer of Brussels is coarse, granular and has a low environmental impact, notably because of its limited mobility. This appears to be due to a very efficient granulometric grading, as a result firstly of the retention of the coarsest solids in highly selective gully-pot inlets, and secondly of an elutriation process removing from the sediment bed all fine organic-rich particles during daily peak flows. There is evidence to show that the build-up of the sediment bed in these large-sized sewers is driven by a bed-load process (active even during dry spells), while the solid material responsible for the detrimental effects of CSOs (which is much finer) is primarily transported through wash-load and suspended-load.


Author(s):  
Tim Nagel ◽  
Julien Chauchat ◽  
Cyrille Bonamy ◽  
Antoine Mathieu ◽  
Xiaofeng Liu ◽  
...  

Scour around structures is a major engineering issue that requires a detailed description of the flow field as well as sediment transport processes. Due to enhanced suspended load associated with vortices generated around structures, sediment transport cannot be solely related to bed shear stress, such as Shields parameter based formula. In order to address this issue, we used a multi-dimensional two-phase flow solver, sedFoam-2.0 (Chauchat et al., GMD 2017) implemented under the open-source CFD toolbox OpenFOAM. Three configurations are studied and compared with experimental and numerical data from the literature. First, the 2D configurations of an horizontal cylinder lying on a sediment bed (Mao, 1986; Sumer et al., 2001) are investigated. Then, the 3D configuration of the scour around a vertical cylindrical pile reported by Roulund et al. (2005) for rigid-bed and live bed cases is investigated.


1993 ◽  
Vol 28 (8-9) ◽  
pp. 199-208 ◽  
Author(s):  
J.-Y. Ding ◽  
S.-C. Wu

In this study experiments simulating sediment/water system were carried on with sediments spiked with aldrin, heptachlor epoxide and p,p'-DDE. It was expected that these hydrophobic contaminants would be released to the overlying water column from sediment bed with molecular diffusion and co-diffusion with dissolved organic matter (DOM) as well. A three-phase-transport model including aqueous, solid and mobile adsorptive phases was developed and used to describe the behavior of these contaminants and to explain the results of the experiments. Sensitivity analyses show that observable effects of DOM occur only under conditions of high partition coefficient (Koc) of the contaminant and high rate of transfer from sediment organic matter to DOM. In this study, owing to the low concentration of DOM and relatively low hydrophobicity of the compounds, the DOM-associated pollutant flux does not significantly contribute to the total flux. Also, the simulated results of the model can reasonably explain the variations of the concentrations of the spiked compounds observed in the microcosms.


Sign in / Sign up

Export Citation Format

Share Document