Prediction methods for natural convection around hollow hybrid fin heat sinks

2018 ◽  
Vol 126 ◽  
pp. 272-280 ◽  
Author(s):  
Nico Setiawan Effendi ◽  
Severianus S.G. R. Putra ◽  
Kyoung Joon Kim
2001 ◽  
Author(s):  
K. K. Sikka ◽  
C. George

Abstract Longitudinal-plate fin heat sinks are optimized under natural convection conditions for the horizontal orientation of the heat sink base plate. The thermal performance of the heat sinks is numerically modeled. The fin height, thickness and spacing and heat sink width are systematically varied. The numerical results are validated by experimentation. Results show that the thermal resistance of a heat sink minimizes for a certain number of fins on the base plate. The fin spacing-to-length ratio at which the minimum occurs is weakly dependent on the fin height and thickness and heat sink width. The flow fields reveal that the minimum occurs for the heat sink geometry in which the number of fins are maximized such that the flow velocity as the air exits the fins is fully developed. A correlation of the heat transfer with the heat sink geometrical parameters is also developed.


Author(s):  
Todd Salamon ◽  
Roger Kempers ◽  
Brian Lynch ◽  
Kevin Terrell ◽  
Elina Simon

Abstract The main drivers contributing to the continued growth of network traffic include video, mobile broadband and machine-to-machine communication (Internet of Things, cloud computing, etc.). Two primary technologies that next-generation (5G) networks are using to increase capacity to meet these future demands are massive MIMO (Multi-Input Multi-Output) antenna arrays and new frequency spectrum. The massive MIMO antenna arrays have significant thermal challenges due to the presence of large arrays of active antenna elements coupled with a reliance on natural convection cooling using vertical plate-finned heat sinks. The geometry of vertical plate-finned heat sinks can be optimized (for example, by choosing the fin pitch and thickness that minimize the thermal resistance of the heat sink to ambient air) and enhanced (for example, by embedding heat pipes within the base to improve heat spreading) to improve convective heat transfer. However, heat transfer performance often suffers as the sensible heat rise of the air flowing through the heat sink can be significant, particularly near the top of the heat sink; this issue can be especially problematic for the relatively large or high-aspect-ratio heat sinks associated with massive MIMO arrays. In this study a vertical plate-finned natural convection heat sink was modified by partitioning the heat sink along its length into distinct sections, where each partitioned section ejects heated air and entrains cooler air. This approach increases overall heat sink effectiveness as the net sensible heat rise of the air in any partitioned section is less than that observed in the unpartitioned heat sink. Experiments were performed using a standard heat sink and equivalent heat sinks partitioned into two and three sections for the cases of ducted and un-ducted natural convection with a uniform heat load applied to the rear of the heat sink. Numerical models were developed which compare well to the experimental results and observed trends. The numerical models also provide additional insight regarding the airflow and thermal performance of the partitioned heat sinks. The combined experimental and numerical results show that for relatively tall natural convection cooled heat sinks, the partitioning approach significantly improves convective heat transfer and overall heat sink effectiveness.


Sign in / Sign up

Export Citation Format

Share Document