Partitioned Heat Sinks for Improved Natural Convection

Author(s):  
Todd Salamon ◽  
Roger Kempers ◽  
Brian Lynch ◽  
Kevin Terrell ◽  
Elina Simon

Abstract The main drivers contributing to the continued growth of network traffic include video, mobile broadband and machine-to-machine communication (Internet of Things, cloud computing, etc.). Two primary technologies that next-generation (5G) networks are using to increase capacity to meet these future demands are massive MIMO (Multi-Input Multi-Output) antenna arrays and new frequency spectrum. The massive MIMO antenna arrays have significant thermal challenges due to the presence of large arrays of active antenna elements coupled with a reliance on natural convection cooling using vertical plate-finned heat sinks. The geometry of vertical plate-finned heat sinks can be optimized (for example, by choosing the fin pitch and thickness that minimize the thermal resistance of the heat sink to ambient air) and enhanced (for example, by embedding heat pipes within the base to improve heat spreading) to improve convective heat transfer. However, heat transfer performance often suffers as the sensible heat rise of the air flowing through the heat sink can be significant, particularly near the top of the heat sink; this issue can be especially problematic for the relatively large or high-aspect-ratio heat sinks associated with massive MIMO arrays. In this study a vertical plate-finned natural convection heat sink was modified by partitioning the heat sink along its length into distinct sections, where each partitioned section ejects heated air and entrains cooler air. This approach increases overall heat sink effectiveness as the net sensible heat rise of the air in any partitioned section is less than that observed in the unpartitioned heat sink. Experiments were performed using a standard heat sink and equivalent heat sinks partitioned into two and three sections for the cases of ducted and un-ducted natural convection with a uniform heat load applied to the rear of the heat sink. Numerical models were developed which compare well to the experimental results and observed trends. The numerical models also provide additional insight regarding the airflow and thermal performance of the partitioned heat sinks. The combined experimental and numerical results show that for relatively tall natural convection cooled heat sinks, the partitioning approach significantly improves convective heat transfer and overall heat sink effectiveness.

Author(s):  
L. T. Yeh ◽  
Joseph Yeh ◽  
B. T. F. Chung

A CFD (computational fluid dynamics) analysis is performed on the finned heat sinks. For convenience, a commercial CFD code, Flotherm, is utilized in the analysis. Though the code can handle the radiation heat transfer, the present analysis is limited to the natural convection with the base of the heat sink at a constant temperature. The continuous fin configuration is first considered due to the importance of its applications. Several experimental data are available for the vertically straight-fin heat sink and a useful correlation is also developed. For given overall fin dimensions of 15″ × 10.341″ × 2.2″, the correlations are first employed to determine the optimal fin spacing. This optimal fin spacing of 0.439 in is then used to develop the baseline CFD model. The dimensions of the baseline CFD model are as follows: Fin width (in): 10.341. Heat sink length (in): 15. Fin spacing (in): 0.439. Fin height (in): 2.0. Fin thickness (in): 0.1. Fin base plate thickness (in): 0.2. Fin numbers: 20. The baseline model with various fin spacing is analyzed and the results (heat loss from the finned heat sink) compare well with those obtained through the correlations. The analysis is extended to the staggered and in-line fin configurations because of their practical applications. Three different fin lengths, including 1″, 3″ and 5″ fin length for the staggered fin array are examined. The results indicate that the effectiveness of heat transfer is increased as the fin length increasing. The continuous fin configuration is the most efficient, and is followed by the staggered fins and then by the in-line fins.


Author(s):  
Mehmet Arik ◽  
Yogen Utturkar ◽  
Murat Ozmusul

In moderate power electronics applications, the most preferred way of thermal management is natural convection to air with or without heat sinks. Though the use of heat sinks is fairly adequate for modest heat dissipation needs, it suffers from some serious performance limitations. Firstly, a large volume of the heat sink is required to keep the junction temperature at an allowable limit. This need arises because of the low convective film coefficients due to close spacing. In the present computational and experimental study, we propose a synthetic jet embedded heat sink to enhance the performance levels beyond two times within the same volume of a regular passive heat sink. Synthetic jets are meso-scale devices producing high velocity periodic jet streams at high velocities. As a result, by carefully positioning of these jets in the thermal real estate, the heat transfer over the surfaces can be dramatically augmented. This increase in the heat transfer rate is able to compensate for the loss of fin area happening due to the embedding of the jet within the heat sink volume, thus causing an overall increase in the heat dissipation. Heat transfer enhancements of 2.2 times over baseline natural convection cooled heat sinks are measured. Thermal resistances are compared for a range of jet operating conditions and found to be less than 0.9 K/W. Local temperatures obtained from experimental and computational agreed within ± 5%.


Author(s):  
Fernando Cano-Banda ◽  
Ana Gallardo-Gutierrez ◽  
Jesus Garcia-Gonzalez ◽  
Abel Hernandez-Guerrero ◽  
Luis Luviano-Ortiz

A radial design of a passive heat sink for cooling LED illumination devices is analyzed numerically in order to identify the geometric shape that promotes better heat dissipation rates. Natural convection with the surrounding is considered during the operation of the heat sink. Due to the fact that natural convection is the main mechanism of heat transfer, the shape of the heat sink has a high influence in the heat dissipated. An analysis of the influence of different parameters of a heat sink is conducted in the presented study. The radial heat sink under analysis consists in a flat disc with rectangular fins on it, and the fins are distributed with a radial longitudinal orientation in a circular row arrangement. The number of rows can vary but there is a constant relation of two times the number of fins between the number of fins in an inner row and the next outer row. In order to find a correct configuration to improve the dissipation of heat, parameters like the number of fins, the length of the fins and the separation between fins are studied. The average Nusselt number and thermal resistance for each geometric configuration are compared. The output analysis provides the best shape for a maximum heat transfer.


2007 ◽  
Vol 129 (4) ◽  
pp. 518-521 ◽  
Author(s):  
Gaowei Xu ◽  
Yingjun Cheng ◽  
Le Luo

The heat-transfer characteristics of 128 small-sized plate-fin heat sinks in a supercomputer chassis are investigated with CFD simulation. The V-shaped curves of the chip temperature versus fin pitch and fin thickness are derived and a thermal resistance model is built to explore the profile and obtain the convective heat-transfer coefficient of the heat sinks. It turns out that the V-shaped profile arises from the joint action of the thermal conduction and convection of heat sink, which can be attributed to the intricacy of the dependencies of thermal resistances on either fin pitch or thickness. It can be further concluded that Biot criterion is applicable to estimate the Biot number of large-scale plate-fin heat sink but not applicable for the small-sized one. The convective heat-transfer coefficient is a complicated function of fin pitch and fin thickness. The empirical formulas of heat transfer are obtained and the fin pitch and fin thickness are optimized.


Author(s):  
SW Pua ◽  
KS Ong ◽  
KC Lai ◽  
MS Naghavi

Downward lighting light-emitting diodes require cooling with cylindrical fin heat sinks to be mounted on top and cooled under natural convection air cooling mode. Performance simulation would involve specification of the heat transfer coefficient. Numerous methods are available to simulate the performance of conventional plate fin heat sinks including computational fluid dynamics packages. It would be feasible to perform simulation based on conventional flat plate fin heat sinks. A cylindrical fin heat sinks could be simply treated as a plate fin heat sink, if we imagine it cut open and laid out horizontally. A theoretical model is proposed in this paper. An experimental investigation is conducted here to validate its accuracy. Convective heat transfer coefficients were experimentally determined for a horizontally and vertically inclined bare plate operating under natural and forced air cooling modes. In addition, a vertical plate fin heat sink and a vertical cylindrical fin heat sink under natural convection were investigated. Power inputs were kept from 5 to 40 W in order to keep operating temperatures below 100 ℃. Comparison of the experimental heat transfer coefficients and those obtained from well-known existing Nusselt number correlations show that agreement was poor for the bare plate but satisfactory for the plate and cylindrical fin heat sinks. Although they are within the generally accepted range, it would be advisable for actual measurements to be carried out in order to provide more accurate sizing for thermal measurements.


2003 ◽  
Author(s):  
Seo Young Kim ◽  
Taeho Ji ◽  
Dong Gyu Choi ◽  
Byung Ha Kang

Experiments have been carried out to investigate the convective heat transfer characteristics from triangular folded fin heat sinks in a suction-type fan duct. The dimension of the triangular folded fin heat sinks is 62 mm in height with a 12 mm thick base plate, 292 mm in width, and 447 mm in length. The inlet flow velocity is varied in the range of 0.6–5.3 m/s. Thermal performance of triangular folded fin heat sinks is evaluated in terms of thermal resistance of heat sinks according to flow velocity and fan power. The results obtained show that the present triangular folded-fin heat sink shows a higher thermal performance compared to a conventional extruded plate-fin heat sink. Especially, a perforated slit folded-fin heat sink displays a lower thermal resistance. As the number of slit fabricated on the perforated folded fins increases, thermal performance is more pronounced.


2019 ◽  
Vol 118 (7) ◽  
pp. 44-49
Author(s):  
Rajshekhar V Unni ◽  
Vijay S Majali

In the paper review of studies of heat sinks under natural convection is taken up. The discussions are mainly on experimental works carried out on rectangular fin arrays, optimization of heat sink dimensions and heat transfer enhancement. The geometries of heat sinks, fin spacing, fin height, fin length, fin thickness and fin material and base to ambient temperature difference are the important parameters on which heat transfer rate depends. So the design and optimization of the heat sink geometries becomes essential. It was found that the optimum fin  spacing is ranging from 6.1- 11.9mm which gives maximum heat dissipation; the base to ambient temperature difference is 20-1500C. During most of the experimental work carried out a good thermal conductivity material which is cost-effective was chosen.


2016 ◽  
Vol 15 (1) ◽  
pp. 26
Author(s):  
V. A. Silva ◽  
B. C. S. Anselmo ◽  
A. L. F. L. Silva ◽  
S. M. M. L. Silva

In this work, the steady state heat transfer by natural convection in heat sinks with rectangular fins positioned vertically and horizontally was studied. The heat transfer by radiation was also considered. Several analyses were performed to determine the optimal number and position of the sensors used to measure the temperature on the heat sinks horizontally and vertically positioned. These analyses confirmed an almost uniform temperature distribution in the heat sink. This uniformity allowed the use of thermocouples only in the center of the heat sink. Twelve heat sinks were designed to study how their geometric parameters such as height, spacing and thickness of the fins, influence the heat transfer by free convection. In addition, in this work, two correlations using the dimensionless parameters Nusselt and Rayleigh are proposed. These correlations were obtained by using the results from the 12 heat sinks vertically and horizontally positioned considering a temperature range between 20 °C and 100 °C. Furthermore, studies were done to identify which of the 12 analyzed heat sinks managed to remove the greatest amount of heat in a given temperature range. The results were compared with those obtained from empirical correlations found in literature.


Heat sinks are frequently used in the cooling of electrical and electronics devices If the heat sink have very close fin spacing, it increases the surface area but reduces the heat transfer coefficient. On the other hand, if heat sink has wide fin spacing, it reduces the surface area but increases the heat transfer coefficient. Therefore, there is need to optimize the fin spacing that enhanced the heat transfer from the heat sink. A properly selected heat sink may reduced the operating temperature and reduce the risk of failure of components. A steady state natural convective heat transfer from aluminum plate fin heat sink was examined experimentally. The length and thickness of fin was kept constant while height were varied from 5mm to 25mm and spacing varied between 5.5mm to 17mm.After experimentation, it was observed that fin spacing plays important role than any other geometrical parameters. Response surface methodology is used for optimization of fin spacing. It is observed that optimum fin spacing of heat sink is 8.28mm.The error analysis is done with the help of ANN and flow visualization were done using CFD


2020 ◽  
Vol 170 ◽  
pp. 01022
Author(s):  
Anilkumar Sathe ◽  
Sudarshan Sanap ◽  
Sunil Dingare ◽  
Narayan Sane

Heat Sinks are widely used to remove the heat from the components which are generating heat during their functioning. Overheating causes malfunctioning of the components as well as it is responsible for reducing their life. Free convection is very common way of heat transfer from the heat sink considering power requirement, pressure drop and cost of the forced convection. This paper presents the thermal analysis of vertical plate fin heat sink by theoretical and experimental method at variable heat input. The results are obtained by taking experimental observations and are validated with already existing correlations suggested by various researchers in the literature.


Sign in / Sign up

Export Citation Format

Share Document