scholarly journals A study on buoyancy-driven maximum ceiling gas temperature of T-shaped bifurcated channel-like structure in fire environment

2022 ◽  
Vol 171 ◽  
pp. 107213
Author(s):  
Yulun Zhang ◽  
Changkun Chen ◽  
Peng Lei ◽  
Weibing Jiao ◽  
Tong Xu ◽  
...  
2020 ◽  
pp. 073490412096381
Author(s):  
Ho-Sik Han ◽  
Cheol-Hong Hwang

A novel simple-shield thermocouple that is capable of radiation correction in fire environments and that has a simpler structure and greater convenience than conventional aspirated thermocouples was proposed. The measurement errors of bare-bead, double-shield aspirated, and simple-shield thermocouples were then compared in a simulated fire environment. In addition, a fire experiment using wood cribs was performed in order to verify the measurement performance of the proposed simple-shield thermocouple in a real fire environment using a one-third-scale ISO 9705 room. The simple-shield thermocouple produced fairly accurate temperatures that fell within 5% of the actual gas temperature in the simulated fire environment. In addition, variations in the surface emissivity and the installation angle of the simple-shield thermocouple in the real fire environment further reduced the measurement error. With a radiant heat flux of 20 kW/m2, it was confirmed that the bare-bead thermocouple had a relative measurement error of up to 80% compared to the aspirated thermocouple, while the proposed simple-shield thermocouple was capable of measuring the temperature within a relative error of around 15% compared to the aspirated thermocouple.


2017 ◽  
Author(s):  
Daniel Madrzykowski ◽  

The goal of this study was to review the available literature to develop a quantitative description of the thermal conditions firefighters and their equipment are exposed to in a structural fire environment. The thermal exposure from the modern fire environment was characterized through the review of fire research studies and fire-ground incidents that provided insight and data to develop a range of quantification. This information was compared with existing standards for firefighting protective equipment to generate a sense of the gap between known information and the need for improved understanding. The comparison of fire conditions with the thermal performance requirements of firefighter protective gear and equipment demonstrates that a fire in a compartment can generate conditions that can fail the equipment that a firefighter wears or uses. The review pointed out the following: 1. The accepted pairing of gas temperature ranges with a corresponding range of heat fluxes does not reflect all compartment fire conditions. There are cases in which the heat flux exceeds the hazard level of the surrounding gas temperature. 2. Thermal conditions can change within seconds. Experimental conditions and incidents were identified in which firefighters would be operating in thermal conditions that were safe for operation based on the temperature and heat flux, but then due to a change in the environment the firefighters would be exposed to conditions that could exceed the protective capabilities of their PPE. 3. Gas velocity is not explicitly considered within the thermal performance requirements. Clothing and equipment tested with a hot air circulating (convection) oven are exposed to gas velocities that measure approximately 1.5 m/s (3 mph). In contrast, the convected hot gas flows within a structure fire could range from 2.3 m/s (5 mph) to 7.0 m/s (15 mph). In cases where the firefighter or equipment would be located in the exhaust portion of a flow path, while operating above the level of the fire, the hot gas velocity could be even higher. This increased hot gas velocity would serve to increase the convective heat transfer rate to the equipment and the firefighter, thereby reducing the safe operating time within the structure. 4. Based on the limited data available, it appears currently available protective clothing enables firefighters to routinely operate in conditions above and beyond the "routine" conditions measured in the fire-ground exposure studies conducted during the 1970s. The fire service and fire standards communities could benefit from an improved understanding of: • real world fire-ground conditions, including temperatures, heat flux, pressure, and chemical exposures; • the impact of convection on the thermal resistance capabilities of firefighting PPE and equipment; and • the benefits of balancing the thermal exposures (thermal performance requirements) across different components of firefighter protective clothing and safety equipment. Because it is unlikely due to trade offs in weight, breathe-ability, usability, cost, etc., that fireproof PPE and equipment will ever be a reality, fire officers and fire chiefs need to consider the capabilities of the protection that their firefighters have when determining fire attack strategies and tactics to ensure that the PPE and equipment is kept within its design operating environment, and that the safety buffer it provides is maintained.


2018 ◽  
pp. 909-917
Author(s):  
Qiang Li ◽  
Jiaqing Zhang ◽  
Jinmei Li ◽  
Yichen Yang ◽  
Minghao Fan

1997 ◽  
Vol 15 (6) ◽  
pp. 443-461 ◽  
Author(s):  
Mingchun Luo

Thermocouples have been widely used to measure temperature in research and industry. For the purpose of building fire experiments, the thermo couple has been and will be a major instrument to obtain the temperature field of the fire environment, and hence to quantify the intensity of building fire. It has been found that the radiation error significantly affects the measured tempera ture using thermocouples. However, this issue has not been carefully investigated in the area of building fire research. A suction pyrometer was designed and applied to a series of fire experiments in a full-scale experimental building-fire facility to avoid the effect of radiation on the measured temperature. It was found that the reading from a bare thermocou ple could be more than 100°C higher than the gas temperature obtained from the suction pyrometer during the flaming fire stage and more than 200°C higher dur ing the flashover stage. For a steady-state fire environment obtained from a propane gas burner fire, the radiation error was negligible in the hot upper level near the ceiling. However, the thermocouple significantly overestimated the gas temperature by more than 80°C in the cool lower level near the floor because of the radiation error. The tem perature predicted by the computational fluid dynamics model, CESARE-CFD fire model, was in good agreement with the measured temperature after the ra diation correction in the lower level and deviated slightly in the upper level.


2012 ◽  
Vol 21 (3) ◽  
pp. 230 ◽  
Author(s):  
Nicholas J. Gralewicz ◽  
Trisalyn A. Nelson ◽  
Michael A. Wulder

A spatially explicit baseline measure of historic, current and future wildfire ignition expectations is required to monitor and understand changes in fire occurrence, the distribution of which climate change is anticipated to modify. Using spatial–temporal patterns of fire in Canada, we present a method to identify baseline expectations and ignition trends between 1980 and 2006 across 1-km spatial units. Kernel density estimates of wildfire ignitions and temporal trajectory metrics were calculated to describe expected ignition density, variability from expected density, and increasing or decreasing density trends. Baseline ignition expectations and trends were used to create unique fire ignition regimes and assess anthropogenic influence on ignitions. Fire ignition densities decreased exponentially as distance to road or populated place increased, and largest ignition trends occurred closest to both variables. Fire ignition regime delineation was more dependent on human transportation networks than human settlement. These findings provide a unique approach to quantifying ignition expectations. This research highlights the potential of this baseline approach for monitoring efforts and fire–environment interaction research and offers a preliminary spatially explicit model of wildfire occurrence expectations in Canada.


2010 ◽  
Vol 2 ◽  
pp. 291630
Author(s):  
C. D. Halevidis ◽  
S. D. Anagnostatos ◽  
A. D. Polykrati ◽  
E. I. Koufakis ◽  
P. D. Bourkas

Sign in / Sign up

Export Citation Format

Share Document