scholarly journals The Interleukin-4 Enhancer CNS-2 Is Regulated by Notch Signals and Controls Initial Expression in NKT Cells and Memory-Type CD4 T Cells

Immunity ◽  
2006 ◽  
Vol 24 (6) ◽  
pp. 689-701 ◽  
Author(s):  
Shinya Tanaka ◽  
Jun Tsukada ◽  
Wataru Suzuki ◽  
Katsuhiko Hayashi ◽  
Kenji Tanigaki ◽  
...  
2004 ◽  
Vol 171 (4S) ◽  
pp. 29-29
Author(s):  
Eugene V. Vykhovanets ◽  
Susan R. Marengo ◽  
Martin I. Resnick ◽  
Gregory T. Maclennan
Keyword(s):  
T Cells ◽  

1995 ◽  
Vol 25 (12) ◽  
pp. 3517-3520 ◽  
Author(s):  
Liang-Peng Yang ◽  
Dae-Gyoo Byun ◽  
Christian E. Demeure ◽  
Nadia Vezzio ◽  
Guy Delespesse

Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Kristine M Wadosky ◽  
Sri N Batchu ◽  
Angie Hughson ◽  
Kathy Donlon ◽  
Craig N Morrell ◽  
...  

Introduction: Our laboratory has shown that Axl, a receptor tyrosine kinase, is important in both vascular and immune functions during deoxycorticosterone acetate (DOCA)-salt hypertension. We hypothesized that Axl activity specifically in T lymphocytes could explain the dependence of hypertension on Axl. Methods and Results: We did adoptive transfers of either Axl+/+ or Axl-/- CD4+ T cells to RAG1-/- mice that lack mature T cells. Once CD4+ T cell repopulations were confirmed, we induced DOCA-salt hypertension for 6 weeks. Systolic blood pressure (BP, mmHg) increased by 20±5 in Axl+/+RAG-/- mice after DOCA-salt, but Axl-/- RAG-/- mice had increases in BP by only 6+3 after 6 weeks of DOCA-salt. We isolated naïve CD4+ T cells from both Axl+/+ and Axl-/- littermates and primed them under either Th1 or Th2 polarizing conditions in culture. Production of interferon gamma (IFN-γ ng/mL) was significantly decreased (-23%, p<0.05) in Axl-/- (396±23) compared to Axl+/+ (512±42) under Th1-priming. However, Axl had no effect on interleukin 4 (IL-4, ng/mL) production under Th2 polarizing conditions. Intracellular staining of the Th1/Th2 cells with IFN-γ and IL-4 antibodies by flow cytometry confirmed expression of cytokines in culture media. Complete blood counts showed that Axl-/- mice had significantly lower white blood cells due to decreased numbers of lymphocytes (4.5±0.7x10 9 ) compared to Axl+/+ mice (7.8±0.7x10 9 ). We found a higher population of AnnexinV (marker of early apoptosis)-positive peripheral leukocytes in Axl-/- mice (10±1%) compared to Axl+/+ (4±1%) by flow cytometry; while the percentages of dead cells (~10%) were similar between Axl+/+ and Axl-/- mice. Conclusions: Altogether we show that expression of Axl by T cells drives salt-induced hypertension. The mechanism of Axl-dependent effects on T cells occurs via T-cell-dependent expression of the pro-inflammatory cytokine IFN-γ. In addition, Axl plays a role in inhibiting lymphocyte apoptosis in the circulation. Future work will focus on how Axl expression in T cells affects T cell-dependent vascular remodeling during hypertension.


PEDIATRICS ◽  
1995 ◽  
Vol 96 (2) ◽  
pp. 385-385
Author(s):  
Kathleen May ◽  
Andrew Liu

Allergen immunotherapy results in a decrease in IL-4 production by CD4+ T cells.


2020 ◽  
Vol 34 (2) ◽  
pp. e00232-20
Author(s):  
Nicolás M. S. Gálvez ◽  
Karen Bohmwald ◽  
Gaspar A. Pacheco ◽  
Catalina A. Andrade ◽  
Leandro J. Carreño ◽  
...  

SUMMARYThe immune system must work in an orchestrated way to achieve an optimal response upon detection of antigens. The cells comprising the immune response are traditionally divided into two major subsets, innate and adaptive, with particular characteristics for each type. Type I natural killer T (iNKT) cells are defined as innate-like T cells sharing features with both traditional adaptive and innate cells, such as the expression of an invariant T cell receptor (TCR) and several NK receptors. The invariant TCR in iNKT cells interacts with CD1d, a major histocompatibility complex class I (MHC-I)-like molecule. CD1d can bind and present antigens of lipid nature and induce the activation of iNKT cells, leading to the secretion of various cytokines, such as gamma interferon (IFN-γ) and interleukin 4 (IL-4). These cytokines will aid in the activation of other immune cells following stimulation of iNKT cells. Several molecules with the capacity to bind to CD1d have been discovered, including α-galactosylceramide. Likewise, several molecules have been synthesized that are capable of polarizing iNKT cells into different profiles, either pro- or anti-inflammatory. This versatility allows NKT cells to either aid or impair the clearance of pathogens or to even control or increase the symptoms associated with pathogenic infections. Such diverse contributions of NKT cells to infectious diseases are supported by several publications showing either a beneficial or detrimental role of these cells during diseases. In this article, we discuss current data relative to iNKT cells and their features, with an emphasis on their driving role in diseases produced by pathogenic agents in an organ-oriented fashion.


1997 ◽  
Vol 27 (10) ◽  
pp. 2657-2665 ◽  
Author(s):  
Beverly J. Holmes ◽  
Paul A. Macary ◽  
Alistair Noble ◽  
D. Michael Kemeny

1999 ◽  
Vol 190 (8) ◽  
pp. 1115-1122 ◽  
Author(s):  
Lucy S.K. Walker ◽  
Adam Gulbranson-Judge ◽  
Sarah Flynn ◽  
Thomas Brocker ◽  
Chandra Raykundalia ◽  
...  

Mice rendered deficient in CD28 signaling by the soluble competitor, cytotoxic T lymphocyte–associated molecule 4–immunoglobulin G1 fusion protein (CTLA4-Ig), fail to upregulate OX40 expression in vivo or form germinal centers after immunization. This is associated with impaired interleukin 4 production and a lack of CXC chemokine receptor (CXCR)5 on CD4 T cells, a chemokine receptor linked with migration into B follicles. Germinal center formation is restored in CTLA4-Ig transgenic mice by coinjection of an agonistic monoclonal antibody to CD28, but this is substantially inhibited if OX40 interactions are interrupted by simultaneous injection of an OX40-Ig fusion protein. These data suggest that CD28-dependent OX40 ligation of CD4 T cells at the time of priming is linked with upregulation of CXCR5 expression, and migration of T cells into B cell areas to support germinal center formation.


Sign in / Sign up

Export Citation Format

Share Document