Seed priming with melatonin improves salt tolerance in cotton through regulating photosynthesis, scavenging reactive oxygen species and coordinating with phytohormone signal pathways

2021 ◽  
Vol 169 ◽  
pp. 113671
Author(s):  
Yi Zhang ◽  
Xiujuan Zhou ◽  
Yating Dong ◽  
Fan Zhang ◽  
Qiuling He ◽  
...  
2014 ◽  
Vol 58 (4) ◽  
pp. 751-757 ◽  
Author(s):  
L. H. Xu ◽  
W. Y. Wang ◽  
J. J. Guo ◽  
J. Qin ◽  
D. Q. Shi ◽  
...  

2018 ◽  
Vol 19 (11) ◽  
pp. 3347 ◽  
Author(s):  
Yayun Wang ◽  
Hui Zhao ◽  
Hua Qin ◽  
Zixuan Li ◽  
Hai Liu ◽  
...  

The root plays an important role in the responses of plants to stresses, but the detailed mechanisms of roots in stress responses are still obscure. The GDP-mannose pyrophosphate synthetase (GMPase) OsVTC1-3 is a key factor of ascorbic acid (AsA) synthesis in rice roots. The present study showed that the transcript of OsVTC1-3 was induced by salt stress in roots, but not in leaves. Inhibiting the expression of OsVTC1-3 by RNA interfering (RI) technology significantly impaired the tolerance of rice to salt stress. The roots of OsVTC1-3 RI plants rapidly produced more O2−, and later accumulated amounts of H2O2 under salt stress, indicating the impaired tolerance of OsVTC1-3 RI plants to salt stress due to the decreasing ability of scavenging reactive oxygen species (ROS). Moreover, exogenous AsA restored the salt tolerance of OsVTC1-3 RI plants, indicating that the AsA synthesis in rice roots is an important factor for the response of rice to salt stress. Further studies showed that the salt-induced AsA synthesis was limited in the roots of OsVTC1-3 RI plants. The above results showed that specifically regulating AsA synthesis to scavenge ROS in rice roots was one of important factors in enhancing the tolerance of rice to salt stress.


2021 ◽  
Author(s):  
Jayoung Kim ◽  
Austin Yeon ◽  
Khandakar Tanvir Ahmed ◽  
Wei Zhang ◽  
Khae-Hawn Kim ◽  
...  

Abstract INTRODUCTION. Interstitial cystitis/painful bladder syndrome (IC) is characterized by chronic bladder pain and urinary storage symptoms. IC affects more than 3.3 million women in the U.S. alone. Ibis T-5000 assays and next generation sequencing have revealed that the C. albicans fungus is highly abundant in the urine of IC patients, particularly those who report greater pain, urinary urgency, and flares. However, currently, the clinical significance of C. albicans in the urine remains elusive. Here, we report the pathological effects and mechanisms triggered by C. albicans in a healthy normal bladder. METHODS. Immortalized bladder epithelial cells were infected with C. albicans. Perturbations in gene expression were identified using an Affymetrix gene microarray and subsequently followed with bioinformatic analyses, including gene set enrichment. Inflammatory and apoptotic genes were quantified using RT-PCR and Western blot analyses. Central signal pathways were examined using Western blot analysis. RESULTS. DNA microarray analysis showed alterations in the transcriptome of bladder epithelial cells infected with C. albicans over both the short and long terms. Key inflammatory and apoptosis networks were changed, which was consistent with several cellular events. Cellular levels of reactive oxygen species and nitrogen oxide increased after infection. Productions of cyclooxygenase-2 and prostaglandine E2 also increased after C. albicans infection, and their productions were suppressed by blockage of reactive oxygen species-epidermal growth factor receptor-Erk pathway. CONCLUSIONS. This study provides evidence that C. albicans infection triggers inflammation and cellular damage by dysregulating key regulatory genes, signaling pathways, and bioactive species in normal bladder cells.


2007 ◽  
Vol 27 (14) ◽  
pp. 5214-5224 ◽  
Author(s):  
Jianhua Zhu ◽  
Xinmiao Fu ◽  
Yoon Duck Koo ◽  
Jian-Kang Zhu ◽  
Francis E. Jenney ◽  
...  

ABSTRACT The myristoylated calcium sensor SOS3 and its interacting protein kinase, SOS2, play critical regulatory roles in salt tolerance. Mutations in either of these proteins render Arabidopsis thaliana plants hypersensitive to salt stress. We report here the isolation and characterization of a mutant called enh1-1 that enhances the salt sensitivity of sos3-1 and also causes increased salt sensitivity by itself. ENH1 encodes a chloroplast-localized protein with a PDZ domain at the N-terminal region and a rubredoxin domain in the C-terminal part. Rubredoxins are known to be involved in the reduction of superoxide in some anaerobic bacteria. The enh1-1 mutation causes enhanced accumulation of reactive oxygen species (ROS), particularly under salt stress. ROS also accumulate to higher levels in sos2-1 but not in sos3-1 mutants. The enh1-1 mutation does not enhance sos2-1 phenotypes. Also, enh1-1 and sos2-1 mutants, but not sos3-1 mutants, show increased sensitivity to oxidative stress. These results indicate that ENH1 functions in the detoxification of reactive oxygen species resulting from salt stress by participating in a new salt tolerance pathway that may involve SOS2 but not SOS3.


2011 ◽  
Vol 157 (1) ◽  
pp. 229-241 ◽  
Author(s):  
Yuval Kaye ◽  
Yael Golani ◽  
Yaniv Singer ◽  
Yehoram Leshem ◽  
Gil Cohen ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dan Wang ◽  
Zhanmin Sun ◽  
Xinxu Hu ◽  
Junbo Xiong ◽  
Lizhen Hu ◽  
...  

Abstract Background The APETALA2/ethylene response factor (AP2/ERF) family are important regulatory factors involved in plants’ response to environmental stimuli. However, their roles in salt tolerance in Lotus corniculatus remain unclear. Results Here, the key salt-responsive transcription factor LcERF056 was cloned and characterised. LcERF056 belonging to the B3–1 (IX) subfamily of ERFs was considerably upregulated by salt treatment. LcERF056-fused GFP was exclusively localised to nuclei. Furthermore, LcERF056- overexpression (OE) transgenic Arabidopsis and L. corniculatus lines exhibited significantly high tolerance to salt treatment compared with wild-type (WT) or RNA interference expression (RNAi) transgenic lines at the phenotypic and physiological levels. Transcriptome analysis of OE, RNAi, and WT lines showed that LcERF056 regulated the downstream genes involved in several metabolic pathways. Chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) and yeast one-hybrid (Y1H) assay demonstrated that LcERF056 could bind to cis-element GCC box or DRE of reactive oxygen species (ROS)-related genes such as lipid-transfer protein, peroxidase and ribosomal protein. Conclusion Our results suggested that the key regulator LcERF056 plays important roles in salt tolerance in L. corniculatus by modulating ROS-related genes. Therefore, it may be a useful target for engineering salt-tolerant L. corniculatus or other crops.


Sign in / Sign up

Export Citation Format

Share Document