Emissivity measurement of tungsten based on a double-wavelength infrared thermometer between 140 and 500℃

2021 ◽  
pp. 103801
Author(s):  
Shuangbao Shu ◽  
Ziyi Wang ◽  
Ziqiang Yang ◽  
Yuzhong Zhang ◽  
Meixia Chen ◽  
...  
2009 ◽  
Vol 3 (1) ◽  
pp. 24-29
Author(s):  
Fadlullah Aksoy ◽  
Yavuz Selim Yildirim ◽  
Bayram Veyseller ◽  
Hasan Demirhan

Author(s):  
Giovanni Carpenè ◽  
Brandon Michael Henry ◽  
Camilla Mattiuzzi ◽  
Giuseppe Lippi
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3817
Author(s):  
Nicholas Wei-Jie Goh ◽  
Jun-Jie Poh ◽  
Joshua Yi Yeo ◽  
Benjamin Jun-Jie Aw ◽  
Szu Cheng Lai ◽  
...  

Fever is a common symptom of many infections, e.g., in the ongoing COVID-19 pandemic, keeping monitoring devices such as thermometers in constant demand. Recent technological advancements have made infrared (IR) thermometers the choice for contactless screening of multiple individuals. Yet, even so, the measurement accuracy of such thermometers is affected by many factors including the distance from the volunteers’ forehead, impurities (such as sweat), and the location measured on the volunteers’ forehead. To overcome these factors, we describe the assembly of an Arduino-based digital IR thermometer with distance correction using the MLX90614 IR thermometer and HC-SR04 ultrasonic sensors. Coupled with some analysis of these factors, we also found ways to programme compensation methods for the final assembled digital IR thermometer to provide more accurate readings and measurements.


2021 ◽  
Vol 11 (9) ◽  
pp. 3773
Author(s):  
Simone Mineo ◽  
Giovanna Pappalardo

Infrared thermography is a growing technology in the engineering geological field both for the remote survey of rock masses and as a laboratory tool for the non-destructive characterization of intact rock. In this latter case, its utility can be found either from a qualitative point of view, highlighting thermal contrasts on the rock surface, or from a quantitative point of view, involving the study of the surface temperature variations. Since the surface temperature of an object is proportional to its emissivity, the knowledge of this last value is crucial for the correct calibration of the instrument and for the achievement of reliable thermal outcomes. Although rock emissivity can be measured according to specific procedures, there is not always the time or possibility to carry out such measurements. Therefore, referring to reliable literature values is useful. In this frame, this paper aims at providing reference emissivity values belonging to 15 rock types among sedimentary, igneous and metamorphic categories, which underwent laboratory emissivity estimation by employing a high-sensitivity thermal camera. The results show that rocks can be defined as “emitters”, with emissivity generally ranging from 0.89 to 0.99. Such variability arises from both their intrinsic properties, such as the presence of pores and the different thermal behavior of minerals, and the surface conditions, such as polishing treatments for ornamental stones. The resulting emissivity values are reported and commented on herein for each different studied lithology, thus providing not only a reference dataset for practical use, but also laying the foundation for further scientific studies, also aimed at widening the rock aspects to investigate through IRT.


2021 ◽  
pp. 103772
Author(s):  
Shuanglong Cui ◽  
Xiaogang Sun ◽  
Meisheng Luan ◽  
Yanxiu Wei

2015 ◽  
Vol 13 (3) ◽  
pp. 364-369 ◽  
Author(s):  
José Henrique Silvah ◽  
Cristiane Maria Mártires de Lima ◽  
Maria do Rosário Del Lama de Unamuno ◽  
Marco Antônio Alves Schetino ◽  
Luana Pereira Leite Schetino ◽  
...  

Objective To evaluate if body surface temperature close to the central venous catheter insertion area is different when patients develop catheter-related bloodstream infections.Methods Observational cross-sectional study. Using a non-contact infrared thermometer, 3 consecutive measurements of body surface temperature were collected from 39 patients with central venous catheter on the following sites: nearby the catheter insertion area or totally implantable catheter reservoir, the equivalent contralateral region (without catheter), and forehead of the same subject.Results A total of 323 observations were collected. Respectively, both in male and female patients, disregarding the occurrence of infection, the mean temperature on the catheter area minus that on the contralateral region (mean ± standard deviation: -0.3±0.6°C versus-0.2±0.5ºC; p=0.36), and the mean temperature on the catheter area minus that on the forehead (mean ± standard deviation: -0.2±0.5°C versus-0.1±0.5ºC; p=0.3) resulted in negative values. Moreover, in infected patients, higher values were obtained on the catheter area (95%CI: 36.6-37.5ºC versus 36.3-36.5ºC; p<0.01) and by temperature subtractions: catheter area minus contralateral region (95%CI: -0.17 - +0.33ºC versus -0.33 - -0.20ºC; p=0.02) and catheter area minus forehead (95%CI: -0.02 - +0.55ºC versus-0.22 - -0.10ºC; p<0.01).Conclusion Using a non-contact infrared thermometer, patients with catheter-related bloodstream infections had higher temperature values both around catheter insertion area and in the subtraction of the temperatures on the contralateral and forehead regions from those on the catheter area.


Sign in / Sign up

Export Citation Format

Share Document