Synthesis, spectroscopic characterization (FT-IR, PL), DFT calculations and antibacterial activity of silver(I) nitrate complex with Nicotinaldehyde

Author(s):  
Sibel CELİK ◽  
Senay YURDAKUL ◽  
Belgin ERDEM
Author(s):  
Arthi P

Abstract             The heterocyclic Schiff bases (N1Z,N4Z)-N1,N4-bis(3,4-methoxyphenyl)methylidene) benzene-1,4-diamine (1), (N1Z,N4Z)-N1,N4-bis(4-bromobenzylidene)benzene-1,4-diamine (2) and (N1Z,N4Z)-N1,N4-bis(furan-2-ylmethyliden)benzene-1,4-diamine (1) were synthesized by the reported procedure. The molecular structure of the compounds (1‒3) was characterized by FT‒IR and 1H NMR. The bond length, bond angle and HOMO‒LUMO energy gap were calculated out by DFT calculations. The synthesized heterocyclic compounds (1‒3) were screened for their antibacterial activity against Staphylococcus aureus and Escherichia coli. The compound 3 displays superior antibacterial activity compared to standard drug Streptomycin. All the compounds significantly interact with antibacterial protein beta-ketoacyl-acp synthase III and anticancer protein c-Kit tyrosine kinase via p–p, σ–p, hydrogen bonding, electrostatic and van der Waals interactions.


2020 ◽  
Vol 1219 ◽  
pp. 128610
Author(s):  
José Ruiz Hidalgo ◽  
Adriana Neske ◽  
Maximiliano A. Iramain ◽  
Patricia E. Alvarez ◽  
Patricio Leyton Bongiorno ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Reza Eivazzadeh-Keihan ◽  
Fateme Radinekiyan ◽  
Hooman Aghamirza Moghim Aliabadi ◽  
Sima Sukhtezari ◽  
Behnam Tahmasebi ◽  
...  

AbstractHerein, a novel nanobiocomposite scaffold based on modifying synthesized cross-linked terephthaloyl thiourea-chitosan hydrogel (CTT-CS hydrogel) substrate using the extracted silk fibroin (SF) biopolymer and prepared Mg(OH)2 nanoparticles was designed and synthesized. The biological capacity of this nanobiocomposite scaffold was evaluated by cell viability method, red blood cells hemolytic and anti-biofilm assays. According to the obtained results from 3 and 7 days, the cell viability of CTT-CS/SF/Mg(OH)2 nanobiocomposite scaffold was accompanied by a considerable increment from 62.5 to 89.6% respectively. Furthermore, its low hemolytic effect (4.5%), and as well, the high anti-biofilm activity and prevention of the P. aeruginosa biofilm formation confirmed its promising hemocompatibility and antibacterial activity. Apart from the cell viability, blood biocompatibility, and antibacterial activity of CTT-CS/SF/Mg(OH)2 nanobiocomposite scaffold, its structural features were characterized using spectral and analytical techniques (FT-IR, EDX, FE-SEM and TG). As well as, given the mechanical tests, it was indicated that the addition of SF and Mg(OH)2 nanoparticles to the CTT-CS hydrogel could improve its compressive strength from 65.42 to 649.56 kPa.


Chemistry ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 783-799
Author(s):  
Maryam Ariannezhad ◽  
Davood Habibi ◽  
Somayyeh Heydari ◽  
Vahideh Khorramabadi

A new magnetic supported manganese-based coordination complex (Fe3O4@SiO2@CPTMS@MBOL@ Mn) was prepared in consecutive stages and characterized via various techniques (VSM, SEM, TEM, XRD, FT-IR, EDX, TG-DTA, and ICP). To evaluate its application, it was used for synthesis of divers Indazolophthalazinetriones in a simple procedure via the one-pot three-component condensation reaction of aldehydes, dimedone, and phthalhydrazide in ethanol under reflux conditions. The Mn catalyst can be recycled without any noticeable loss in catalytic activity. Additionally, the antibacterial properties of the nano-catalyst were studied against some bacterial strains.


Author(s):  
N. Sundaraganesan ◽  
S. Kalaichelvan ◽  
C. Meganathan ◽  
B. Dominic Joshua ◽  
J. Cornard

2018 ◽  
Vol 91 (3) ◽  
pp. 389-396 ◽  
Author(s):  
Yanshan Yin ◽  
Jie Yin ◽  
Wei Zhang ◽  
Hong Tian ◽  
Zhangmao Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document