The critical cooling rate and microstructure evolution of Zr41.2Ti13.8Cu12.5Ni10Be22.5 composites by Bridgman solidification

2010 ◽  
Vol 18 (1) ◽  
pp. 115-118 ◽  
Author(s):  
J.L. Cheng ◽  
G. Chen ◽  
P. Gao ◽  
C.T. Liu ◽  
Y. Li
2012 ◽  
Vol 535-537 ◽  
pp. 761-763 ◽  
Author(s):  
Yi Sheng Zhao ◽  
Xin Ming Zhang ◽  
Zhi Guo Gao

The law of phase change of bearing-B steel during continual cooling was studied by adopting dilatometer. The CCT curves of bearing-B steel were drawn, and the effects of RE on critical cooling rates were studied. The experimental results show that the start temperatures of martensite TM was decreased from 438 to 404°C. The critical cooling rate was simultaneously decreased from 33 to 15°C/s.


2011 ◽  
Vol 194-196 ◽  
pp. 237-242
Author(s):  
Cheng Jun Liu ◽  
Ya He Huang ◽  
Mao Fa Jiang

Clean heavy rail steel was prepared by the process of vacuum induction furnace smelting, forge work and rolling. Effects of Rare earths (RE) on phase transformation and microstructure of heavy rail steel were investigated by thermal simulation machine, metallographic microscope and scanning electronic microscope. Thermal simulate tests indicate that, RE can move the C curve of pearlite transformation to lower right, prolong the incubation period of pearlite and improve the stability of undercooled austenite. The minimum incubation period of pearlite transformation is increased from 24s to 30s by RE. Furthermore, RE can decrease the critical cooling rate of pearlite transformation from 1°C•s-1to 0.5°C•s-1and the critical cooling rate of quenching from 15°C•s-1to 13°C•s-1. Additionally, RE can fine the annealing and anormalizing pearlite notably. The pearlite laminae distance of heavy rail steel added RE is decreased by 12.9% (annealing) and 13.3% (normalizing), respectively.


2002 ◽  
Vol 386-388 ◽  
pp. 111-116 ◽  
Author(s):  
Jan Schroers ◽  
William L. Johnson

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 918
Author(s):  
Julia Osten ◽  
Benjamin Milkereit ◽  
Michael Reich ◽  
Bin Yang ◽  
Armin Springer ◽  
...  

The mechanical properties after age hardening heat treatment and the kinetics of related phase transformations of high strength AlZnMgCu alloy AA 7068 were investigated. The experimental work includes differential scanning calorimetry (DSC), differential fast scanning calorimetry (DFSC), sophisticated differential dilatometry (DIL), scanning electron microscopy (SEM), as well as hardness and tensile tests. For the kinetic analysis of quench induced precipitation by dilatometry new metrological methods and evaluation procedures were established. Using DSC, dissolution behaviour during heating to solution annealing temperature was investigated. These experiments allowed for identification of the appropriate temperature and duration for the solution heat treatment. Continuous cooling experiments in DSC, DFSC, and DIL determined the kinetics of quench induced precipitation. DSC and DIL revealed several overlapping precipitation reactions. The critical cooling rate for a complete supersaturation of the solid solution has been identified to be 600 to 800 K/s. At slightly subcritical cooling rates quench induced precipitation results in a direct hardening effect resulting in a technological critical cooling rate of about 100 K/s, i.e., the hardness after ageing reaches a saturation level for cooling rates faster than 100 K/s. Maximum yield strength of above 600 MPa and tensile strength of up to 650 MPa were attained.


Sign in / Sign up

Export Citation Format

Share Document