(TiZrNbTa)-Mo high-entropy alloys: Dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening

2018 ◽  
Vol 95 ◽  
pp. 59-72 ◽  
Author(s):  
Shao-Ping Wang ◽  
Jian Xu
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 721
Author(s):  
Yupeng Zhang ◽  
Qingkai Shen ◽  
Xizhang Chen ◽  
Subramanian Jayalakshmi ◽  
Ramachandra Arvind Singh ◽  
...  

In high entropy alloys (HEAs), the addition of large-size atoms results in lattice distortion and further leads to solid solution strengthening or precipitation strengthening. However, the relationship between atomic radius, solid solution strengthening and precipitation strengthening has not been discerned yet. In this work, CoCrFeNiX0.4 (X = Al, Nb, Ta, with an equi-atomic radius) HEAs were prepared by powder plasma arc additive manufacturing (PPA-AM) and evaluated for their mechanical properties. Compression and nano-indentation hardness tests showed that the HEA with Ta showed the best properties. The influence of atomic radius and solid solubility on solid solution strengthening was investigated and the main strengthening mechanism that determines the mechanical properties of the developed HEAs was analyzed. The results showed that (i) the CoCrFeNiAl0.4 alloy did not show any solid solution strengthening effect and that a clear relation between solid solution strengthening and atomic size was not observed; (ii) in both CoCrFeNiTa0.4 and CoCrFeNiNb0.4 HEAs, precipitation strengthening and grain boundary strengthening effects are observed, wherein the difference in mechanical properties between both the alloys can be mainly attributed to the formation of fine eutectic structure in CoCrFeNiTa0.4; and (iii) from the microstructural analyses, it was identified that, in the CoCrFeNiTa0.4 HEA, the location containing a fine eutectic structure is accompanied by the formation of low-angle grain boundaries (LAGBs), which is also the region where deformed grains gather, giving rise to improved mechanical strengthening.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 282 ◽  
Author(s):  
Li Xiang ◽  
Wenmin Guo ◽  
Bin Liu ◽  
Ao Fu ◽  
Jianbo Li ◽  
...  

A series of TaNbVTiAlx (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) refractory high-entropy alloys (RHEAs) with high specific strength and reasonable plasticity were prepared using powder metallurgy (P/M) technology. This paper studied their microstructure and compression properties. The results show that all the TaNbVTiAlx RHEAs exhibited a single BCC solid solution microstructure with no elemental segregation. The P/M TaNbVTiAlx RHEAs showed excellent room-temperature specific strength (207.11 MPa*cm3/g) and high-temperature specific strength (88.37 MPa*cm3/g at 900 °C and 16.03 MPa*cm3/g at 1200 °C), with reasonable plasticity, suggesting that these RHEAs have potential to be applied at temperatures >1200 °C. The reasons for the excellent mechanical properties of P/M TaNbVTiAl0.2 RHEA were the uniform microstructure and solid solution strengthening effect.


2021 ◽  
pp. 110877
Author(s):  
Ankit Roy ◽  
Praveen Sreeramagiri ◽  
Tomas Babuska ◽  
Brandon Krick ◽  
Pratik K. Ray ◽  
...  

2019 ◽  
Vol 151 ◽  
pp. 310-317 ◽  
Author(s):  
Carlyn R. LaRosa ◽  
Mulaine Shih ◽  
Céline Varvenne ◽  
Maryam Ghazisaeidi

2007 ◽  
Vol 353-358 ◽  
pp. 718-721
Author(s):  
Ding Fei Zhang ◽  
Rong Shen Liu ◽  
Jian Peng ◽  
Wei Yuang ◽  
Hong Ju Zhang

With different heat treatment, the microstructure and mechanical properties of ZK60 magnesium alloy were investigated. It can be concluded that heat treatment has great effect on mechanical properties of ZK60. With artificial aging after extruding, the precipitation of the second phase from the supersaturated solid solution significantly improved mechanical properties. It can greatly increase yield strength of ZK60 alloy, while the tensile strength has little change. For the combination of solid solution strengthening and age hardening, two opposite factors must be considered. On one hand, the solid solution strengthening and the later precipitation strengthening is good for alloy’s strength; on the other hand, the properties decrease as the grains grew under high temperature for a long time during solution heating.


2014 ◽  
Vol 1036 ◽  
pp. 101-105
Author(s):  
Gheorghe Buluc ◽  
Iulia Florea ◽  
Oana Bălţătescu ◽  
Costel Roman ◽  
Ioan Carcea

This paper presents the microstructure and the mechanical properties of FeNiCrCuAl high entropy alloys. The microstructure and mechanical properties of the annealed FeNiCrCuAl high entropy alloys were investigated using scanning electron microscopy, and X-ray diffraction. High entropy alloys have been known as a new type of materials and have been defined as having five or more principal elements, each one having a concentration between 5 and 35 at.%. Previous researches show that HEAs can be processed to form simple solid solution structures instead of intermetallics and other complicated compounds. This phenomenon is commonly attributed to the high configurational entropy in the solid solution state of HEAs. Furthermore, HEAs have also exhibited interesting properties such as high hardness and high strength, good thermal stability outstanding wear and oxidation resistance which offer great potential for engineering applications. The HEA systems explored in the past decade show that metallic elements are the most commonly used, e.g. Al, Cr, Fe, Co, Ni, Cu,Ti, etc. A wide range of HEAs exhibit high hardness, high strength, distinctive electrical and magnetic properties, high-temperature softening resistance, as well as favorable combination of compression strength and ductility. This combination of properties and the particular structures of HEAs are attractive for a number of potential engineering applications.


Sign in / Sign up

Export Citation Format

Share Document