Dietary soy isoflavone attenuated growth performance and intestinal barrier functions in weaned piglets challenged with lipopolysaccharide

2015 ◽  
Vol 28 (1) ◽  
pp. 288-294 ◽  
Author(s):  
Cui Zhu ◽  
Yunpeng Wu ◽  
Zongyong Jiang ◽  
Chuntian Zheng ◽  
Li Wang ◽  
...  
2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 470-471
Author(s):  
Min Song ◽  
Yijie Fan ◽  
Han Su ◽  
Fenglin Zhang ◽  
Fangfang Liu ◽  
...  

Abstract This study aimed to investigate the effects of ActigenTM, a second-generation mannan rich fraction, on growth performance, intestinal barrier functions and inflammation in weaned piglets. A total of 150 weaned piglets were randomly assigned to Control, antibiotics and Actigen groups and received 1 of 3 dietary treatments: a basal antibiotics-free diet to which 100 mg/kg antibiotics or 800 mg/kg Actigen were added. Body weight and feed intake were recorded. On day 28, 10 piglets per treatment were selected to collect blood, small intestinal segments and mucosa samples. Intestinal morphology and goblet cell number were determined. Expression of tight junction proteins and Toll Like receptor 4 (TLR4) signaling were detected. D-lactic acid (DLA) and inflammatory cytokines in serum were also measured. Actigen or antibiotics supplemented diets significantly reduced incidence of diarrhea, with no effect on growth performance. Intestinal morphology revealed that antibiotics significantly decreased, while Actigen markedly increased the villus height and the ratio of villus height to crypt depth. PAS staining demonstrated that the goblet cell number was markedly elevated in jejunum of the Actigen fed piglets. In addition, the expression of tight junction proteins was significantly decreased and increased by antibiotics and Actigen use, respectively. Accordingly, the intestinal permeability was elevated by antibiotics use, with the increased serum DLA. Furthermore, Actigen fed piglets had lower serum proinflammatory cytokine TNF-α and higher serum anti-inflammatory cytokine IL-10. In contrast, antibiotics use led to the increase of serum IL-1β. Moreover, the expression of TLR4, Myd88, and IKKβ phosphyorlation were enhanced by antibiotics use, suggesting the activation of TLR4 signaling pathway. However, Actigen supplemented diet had no effect on the TLR4 signaling pathway. In conclusion, compared with the control and antibiotics groups, Actigen supplemented diet had the similar or improved effects on growth performance, intestinal barrier functions and inflammation in weaned piglets.


2021 ◽  
Author(s):  
Dingfa Wang ◽  
Luli Zhou ◽  
Hanlin Zhou ◽  
Guanyu Hou

Abstract Background: The effects of dietary supplementation with guava leaf extracts (GE) on growth performance, diarrhea and intestinal barrier function, as well as associated with its modulation of serum and fecal metabolic changes in weaned piglets challenged by enterotoxigenic Escherichia coli (ETEC) were investigated.Method: Fifty weaned piglets (Duroc × Yorkshire × Landrace) from 5 pens (2 piglets per pen) were randomly divided into five groups: blank control group (BC), negative control group (NC), or those supplemented with 50 mg kg-1 (S50), 100 mg kg-1 (S100), or 200 (S200) mg kg-1 diet GE, respectively. On day 4, all piglets (except for BC) were orally challenged with about 1.0 × 109 colony-forming units (CFU) enterotoxigenic ETEC. After 28-day trial, growth performance, diarrhea incidence, intestinal barrier function and metabolomics of serum and fecal were investigated.Results: We demonstrated that dietary supplementation with GE (50-200 mg kg-1) reduced diarrhea incidence of piglets and increased expression of intestinal tight junction proteins (ZO-1, Occludin, Claudin-1) (P < 0.05) and sodium hydrogen exchanger 3 (NHE3) (P < 0.05). Moreover, dietary supplementation with GE (50-200 mg kg-1) upregulated level of tetrahydrofolic acid (THF) and reversed higher level of nicotinamide-adenine dinucleotide phosphate (NADP) caused by ETEC in serum compared with NC group (P < 0.05), and enhanced antioxidant ability of piglets. In addition, dietary addition with GE (100 mg kg-1) reversed the lower level of L-pipecolic acid caused by ETEC in feces compared with NC group (P < 0.05), and decreased oxidative stress response of piglets. Further, there were no differences (P > 0.05) in the final weight, average daily feed intake (ADFI) and F/G among dietary groups during the overall period, and piglets in S50 group has the higher average daily gain (ADG). Conclusion: Dietary supplementation with 50-200 mg kg-1 GE reduced diarrhea incidence of weaned piglets challenged by ETEC and exhibited positive effect on improving intestinal barrier function. Meanwhile, dietary addition with GE organized and redistributed energy resources through similar or dissimilar metabolic pathways, and finally enhanced antioxidant ability of piglets challenged by ETEC.


Author(s):  
Yuxia Chen ◽  
Yining Xie ◽  
Ruqing Zhong ◽  
Hui Han ◽  
Lei Liu ◽  
...  

Abstract The objective of this study was to investigate the effects of xylo-oligosaccharides (XOS) supplementation on growth performance, serum parameters, small intestinal morphology, intestinal mucosal integrity, and immune function in weaned piglets. A total of 240 weaned piglets with an average body weight (BW) of 8.82 ± 0.05 kg (28 d of age) were assigned randomly to 4 dietary treatments in a 28-d trial, including a control diet (CON), 3 diets with XOS supplementation at the concentration of 100, 500 and 1000 mg/kg (XOS100, XOS500, and XOS1000). There were 4 replicates per treatment with 15 pigs per pen. From d 1 to 14, there were no differences (P &gt; 0.05) in average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) during the different treatments. The different doses of XOS showed a quadratic effect on BW on d 28, ADG and G:F d 1-28 of piglets (P &lt; 0.05). From d 15 to 28, ADG of pigs fed the XOS500 diet was higher (P &lt; 0.05) than pigs fed the CON diet. During the overall period (d 1 to 28), pigs fed the XOS500 diet had a higher BW, ADG and G:F than pigs fed the CON diet (P &lt; 0.05). In addition, compared with the CON group, the XOS500 group had significantly higher serum total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD) and catalase (CAT) levels and lower malondialdehyde (MDA) levels on d 14 and 28 (P &lt; 0.05). The serum immunoglobulin G (IgG) concentration in the XOS500 group was also significantly higher compared with the CON group on d 14 and 28 (P &lt;0.05). However, serum immunoglobulin A (IgA) and immunoglobulin M (IgM) were not affected by the dietary treatments. Supplementation of XOS500 to the feed significantly increased the villus height (VH) and villus height to crypt depth ratio (VH:CD) in the jejunum and ileum in comparison with the CON and XOS1000 group. Moreover, the XOS500 group significantly elevated the expression levels of Occludin and zonula occludens protein-1 (ZO-1) in the ileum compared to the CON group. The ileal interleukin (IL)-1β, IL-8 and interferon (IFN)-γ mRNA expression levels in the XOS100 and XOS500 group were markedly lower than in the CON group. In contrast, the ileal IL-10 mRNA expression levels were remarkably higher in the XOS500 than CON group. In conclusion, xylo-oligosaccharides have a beneficial effect on growth performance by improving serum antioxidant defense system, serum IgG, small intestinal structure and intestinal barrier function in weaned piglets.


2021 ◽  
Author(s):  
Xinxin Jin ◽  
Boyu Yuan ◽  
Mingming Liu ◽  
Mingqiang Zhu ◽  
Xue Zhang ◽  
...  

Abstract Background:A high-quality protein substitute, Hermetia illucens (Black soldier fly) larvae powder is rich in protein, fat, amino acid, calcium, and other substances. Due to the relatively few studies on the feeding of weaned piglets, in the present study, we replaced part or all of the fish meal with a relevant proportion of Hermetia illucens larvae powder in the feed to study its effect on weaned piglets. A total of forty-eight young female weaned piglets (Duroc ´ Landrace ´ Large White) with initial body weights (BW) 7.68 ± 0.26 kg, were randomly divided into three groups, each group had eight replicates, two pigs per replicate. Three groups containing different proportions of Hermetia illucens larvae powder (0, 4%, and 8%) were referred to as C, HI4, and HI8. We designed a 28-day feeding experiment, collecting blood and feces, thereafter inducing the piglets with oral gavage of ETEC K88 and recording diarrhea on day 29 of the experiment. Four piglets in each group were selected to collect serum, colon contents, intestinal tissue, and jejunum, ileum, colon mucosa samples.Results:The growth performance of weaned piglets remained unaffected on supplementing feed with Hermetia illucens. Compared with C+K88 group, the diarrhea rate was found to be attenuated for the Hermetia illucens supplemented group. Severe damage was evident in the case of the ileum villi of the C+K88 group, whereas improved integrity was demonstrated by the ileum villi of the HI4+K88 and HI8+K88 groups. Significantly increased expressions of the anti-inflammatory factor IL-10 in the intestinal mucosa (P < 0.05) and the tight junction proteins Occludin and Claudin-3 (P < 0.05) and reduced expression of the pro-inflammatory factor TNF-α (P < 0.05) were reflected in the HI4+K88 and HI8+K88 groups as compared to the C+K88 group. The activity of antioxidant enzymes CAT and POD (P < 0.05) also revealed an effective increase in the Hermetia illucens supplemented groups than the control. The results of immunoblotting also validated that the same ETEC K88 treatment of weaned piglets enhanced the expression of tight junction protein in the intestinal mucosa of the Hermetia illucens addition group (P < 0.05) and the integrity of the intestinal barrier was also better maintained. The experimental results affirmed that Hermetia illucens larvae powder could partially or completely replace fish meal, increase the content of Lactobacillus, reduce the content of Streptococcus, improve the body’s disease resistance, and improve intestinal health.Conclusions:ETEC-induced diarrhea will be reduced by the diet of weaned piglets containing Hermetia illucens larvae, ameliorating the immune performance of pigs. The present research provides a new perspective for insect meal as a sustainable protein source for pig feed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qingyuan Yi ◽  
Jiaxin Liu ◽  
Yufeng Zhang ◽  
Hanzhen Qiao ◽  
Fang Chen ◽  
...  

This study aimed to investigate the effects of dietary anethole supplementation on the growth performance, intestinal barrier function, inflammatory response, and intestinal microbiota of piglets challenged with enterotoxigenic Escherichia coli K88. Thirty-six weaned piglets (24 ± 1 days old) were randomly allocated into four treatment groups: (1) sham challenge (CON); (2) Escherichia coli K88 challenge (ETEC); (3) Escherichia coli K88 challenge + antibiotics (ATB); and (4) Escherichia coli K88 challenge + anethole (AN). On day 12, the piglets in the ETEC, ATB, and AN group were challenged with 10 mL E. coli K88 (5 × 109 CFU/mL), whereas the piglets in the CON group were orally injected with 10 mL nutrient broth. On day 19, all the piglets were euthanized for sample collection. The results showed that the feed conversion ratio (FCR) was increased in the Escherichia coli K88-challenged piglets, which was reversed by the administration of antibiotics or anethole (P &lt; 0.05). The duodenum and jejunum of the piglets in ETEC group exhibited greater villous atrophy and intestinal morphology disruption than those of the piglets in CON, ATB, and AN groups (P &lt; 0.05). Administration of anethole protected intestinal barrier function and upregulated mucosal layer (mRNA expression of mucin-1 in the jejunum) and tight junction proteins (protein abundance of ZO-1 and Claudin-1 in the ileum) of the piglets challenged with Escherichia coli K88 (P &lt; 0.05). In addition, administration of antibiotics or anethole numerically reduced the plasma concentrations of IL-1β and TNF-α (P &lt; 0.1) and decreased the mRNA expression of TLR5, TLR9, MyD88, IL-1β, TNF-α, IL-6, and IL-10 in the jejunum of the piglets after challenge with Escherichia coli K88 (P &lt; 0.05). Dietary anethole supplementation enriched the abundance of beneficial flora in the intestines of the piglets. In summary, anethole can improve the growth performance of weaned piglets infected by ETEC through attenuating intestinal barrier disruption and intestinal inflammation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yongdi Zeng ◽  
Zirui Wang ◽  
Tiande Zou ◽  
Jun Chen ◽  
Guanhong Li ◽  
...  

This study aimed to investigate the effects of dietary bacteriophage supplementation on growth performance, intestinal morphology, barrier function, and intestinal microbiota of weaned piglets fed antibiotic-free diet. A total of 120 weaned piglets were allotted to four dietary treatments with five pens/treatment and six piglets/pen in a 21-d feeding trial. The control diet was supplemented with 25 mg/kg quinocetone and 11.25 mg/kg aureomycin in the basal diet, while the three treatment diets were supplemented with 200, 400, or 600 mg/kg bacteriophage in the basal diet, respectively. There was no difference for growth performance and all measured indices of serum and intestinal tissues between 200 mg/kg bacteriophage group and the control group with antibiotics (P &gt; 0.05). More importantly, compared with the control diet, dietary 400 mg/kg bacteriophage inclusion increased average daily gain and average daily feed intake, and decreased feed/gain ratio and diarrhea incidence of weaned piglets (P &lt; 0.05). Also, piglets fed 400 mg/kg bacteriophage had elevated villi height (VH) in jejunum and ileum, reduced crypt depth (CD) in jejunum and ileum, and elevated VH/CD ratio in duodenum, jejunum and ileum (P &lt; 0.05). Compared to the control group, piglets fed 400 mg/kg bacteriophage had lower interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and higher interleukin-10 (IL-10) concentration in serum, and higher secretory immunoglobulin A (sIgA), intestinal trefoil factor (ITF), and tumor growth factor-alpha (TGF-α) content in the ileal mucosa (P &lt; 0.05). Besides, dietary addition with 400 mg/kg bacteriophage decreased the D-lactate concentration and diamine oxidase (DAO) activity in serum, and increased the relative mRNA expression of ZO-1, Claudin-1, Occludin, TLR2, TLR4, and TLR9, as well as the relative protein expression of Occludin in the jejunum (P &lt; 0.05). However, the growth performance and all analyzed parameters in serum and intestinal tissues were not further improved when piglets fed 600 vs. 400 mg/kg bacteriophage (P &gt; 0.05). MiSeq sequencing analysis showed that bacteriophage regulated the microbial composition in caecum digesta, as indicated by higher observed_species, Chao1, and ACE richness indices, as well as changes in the relative abundance of Firmicutes, Bacteroidetes, and Tenericutes (P &lt; 0.05). Collectively, 400 mg/kg bacteriophage can be used as an antibiotics alternative for promoting the growth of weaned piglets. The underlying mechanism is associated with a positive effect of bacteriophage on intestinal inflammation, intestinal barrier function and gut microbiota in weaned piglets.


Sign in / Sign up

Export Citation Format

Share Document