Effects of graded levels of xylo-oligosaccharides on growth performance, serum parameters, intestinal morphology and intestinal barrier function in weaned piglets

Author(s):  
Yuxia Chen ◽  
Yining Xie ◽  
Ruqing Zhong ◽  
Hui Han ◽  
Lei Liu ◽  
...  

Abstract The objective of this study was to investigate the effects of xylo-oligosaccharides (XOS) supplementation on growth performance, serum parameters, small intestinal morphology, intestinal mucosal integrity, and immune function in weaned piglets. A total of 240 weaned piglets with an average body weight (BW) of 8.82 ± 0.05 kg (28 d of age) were assigned randomly to 4 dietary treatments in a 28-d trial, including a control diet (CON), 3 diets with XOS supplementation at the concentration of 100, 500 and 1000 mg/kg (XOS100, XOS500, and XOS1000). There were 4 replicates per treatment with 15 pigs per pen. From d 1 to 14, there were no differences (P > 0.05) in average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) during the different treatments. The different doses of XOS showed a quadratic effect on BW on d 28, ADG and G:F d 1-28 of piglets (P < 0.05). From d 15 to 28, ADG of pigs fed the XOS500 diet was higher (P < 0.05) than pigs fed the CON diet. During the overall period (d 1 to 28), pigs fed the XOS500 diet had a higher BW, ADG and G:F than pigs fed the CON diet (P < 0.05). In addition, compared with the CON group, the XOS500 group had significantly higher serum total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD) and catalase (CAT) levels and lower malondialdehyde (MDA) levels on d 14 and 28 (P < 0.05). The serum immunoglobulin G (IgG) concentration in the XOS500 group was also significantly higher compared with the CON group on d 14 and 28 (P <0.05). However, serum immunoglobulin A (IgA) and immunoglobulin M (IgM) were not affected by the dietary treatments. Supplementation of XOS500 to the feed significantly increased the villus height (VH) and villus height to crypt depth ratio (VH:CD) in the jejunum and ileum in comparison with the CON and XOS1000 group. Moreover, the XOS500 group significantly elevated the expression levels of Occludin and zonula occludens protein-1 (ZO-1) in the ileum compared to the CON group. The ileal interleukin (IL)-1β, IL-8 and interferon (IFN)-γ mRNA expression levels in the XOS100 and XOS500 group were markedly lower than in the CON group. In contrast, the ileal IL-10 mRNA expression levels were remarkably higher in the XOS500 than CON group. In conclusion, xylo-oligosaccharides have a beneficial effect on growth performance by improving serum antioxidant defense system, serum IgG, small intestinal structure and intestinal barrier function in weaned piglets.

2017 ◽  
Vol 62 (No. 1) ◽  
pp. 15-21
Author(s):  
X. Yue ◽  
L. Hu ◽  
X. Fu ◽  
M. Lv ◽  
X. Han

The effects of dietary chitosan-copper chelate (CS-Cu) on growth performance, diarrhea, intestinal morphology and epithelial cell apoptosis in weaned piglets was investigated. One hundred and sixty Duroc × Landrace × Yorkshire weanling barrows with an average body weight of 7.75 kg were randomly assigned to one of the following dietary treatments: (1) control, (2) 100 mg Cu/kg diet from CuSO<sub>4</sub>, (3) 100 mg Cu/kg diet from CuSO<sub>4</sub> mixed with chitosan (CuSO<sub>4</sub>+CS), (4) 100 mg Cu/kg diet from CS-Cu. The feeding trial lasted for 30 days. The results showed that the pigs receiving a diet containing CS-Cu had higher average daily gain and lower diarrhea incidence than the pigs receiving dietary CuSO<sub>4</sub> and CuSO<sub>4</sub>+CS. Villus height and the ratio of villus height/crypt depth in duodenum, jejunum, and ileum were higher and crypt depth was lower in CS-Cu treated pigs than in pigs fed dietary CuSO<sub>4 </sub>or CuSO<sub>4</sub>+CS. An apparent decrease of ileal epithelial cell apoptosis in pigs fed CS-Cu diet was found. The activities of antioxidant enzymes were higher in pigs fed dietary CS-Cu than in those fed other diets. The results indicated that dietary CS-Cu showed better biological and physiological function in improving small intestinal morphology and reducing diarrhea incidence.


Author(s):  
Q. J. Wu ◽  
Z. H. Liu ◽  
C. Jiao ◽  
B. Y. Cheng ◽  
D. D. Zhu ◽  
...  

The effect of glutamine (Gln) on growth performance, intestinal morphology and intestinal barrier function were evaluated in broilers. A total of 320 birds were divided into a control group (CON) and three experimental groups (Gln 1, Gln 2 and Gln 3). Broilers of group CON received basal diet; broilers in group Gln 1, Gln 2 and Gln 3 were supplemented with 0.5%, 1.0% and 1.5 % Gln, respectively, for 42 days. The results indicated that Gln has no influence on the average daily gain (ADG) among the treatments in the periods of 1 to 21 d, 22 to 42 d and 1 to 42 d (P > 0.05). However, Gln improved average daily feed intake (ADFI) and feed intake: average daily gain (F: G), increased the villus height, villus height to crypt depth ratio (V/C) and the activities of sucrose, the ZO1, claudin-1 and occluding mRNA expression levels (P 0.05). Moreover, Gln decreased the crypt depth of jejunum and ileum in broilers at days 21 and 42 (P 0.05). In conclusion, Gln had a positive effect on growth performance and gut parameters by modifying the function of the intestinal mucosa barrier.


2017 ◽  
Vol 62 (No. 1) ◽  
pp. 15-21
Author(s):  
X. Yue ◽  
L. Hu ◽  
X. Fu ◽  
M. Lv ◽  
X. Han

The effects of dietary chitosan-copper chelate (CS-Cu) on growth performance, diarrhea, intestinal morphology and epithelial cell apoptosis in weaned piglets was investigated. One hundred and sixty Duroc × Landrace × Yorkshire weanling barrows with an average body weight of 7.75 kg were randomly assigned to one of the following dietary treatments: (1) control, (2) 100 mg Cu/kg diet from CuSO<sub>4</sub>, (3) 100 mg Cu/kg diet from CuSO<sub>4</sub> mixed with chitosan (CuSO<sub>4</sub>+CS), (4) 100 mg Cu/kg diet from CS-Cu. The feeding trial lasted for 30 days. The results showed that the pigs receiving a diet containing CS-Cu had higher average daily gain and lower diarrhea incidence than the pigs receiving dietary CuSO<sub>4</sub> and CuSO<sub>4</sub>+CS. Villus height and the ratio of villus height/crypt depth in duodenum, jejunum, and ileum were higher and crypt depth was lower in CS-Cu treated pigs than in pigs fed dietary CuSO<sub>4 </sub>or CuSO<sub>4</sub>+CS. An apparent decrease of ileal epithelial cell apoptosis in pigs fed CS-Cu diet was found. The activities of antioxidant enzymes were higher in pigs fed dietary CS-Cu than in those fed other diets. The results indicated that dietary CS-Cu showed better biological and physiological function in improving small intestinal morphology and reducing diarrhea incidence.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2514
Author(s):  
Yanhan Liu ◽  
Cun Liu ◽  
Keying An ◽  
Xiaowei Gong ◽  
Zhaofei Xia

Clostridium butyricum (C. butyricum) is increasingly being used to test the promotion of the gut health of animals. However, the modes of action for such applications for waterfowl remain unclear. Thus, we investigated whether or not intestinal barrier function, immune-related gene expression, and the diversity of the intestinal microbiota in Pekin ducks varied under C. butyricum supplementation. A total of 500 ducks were randomly assigned into five treatments supplemented with basal diets containing: either 0 (group Control), 200 (group CB200), 400 (group CB400) and 600 (group CB600) mg/kg C. butyricum or 150 mg/kg aureomycin (group A150) for 42 days. In comparison with the control group, C. butyricum supplementation enhanced the growth performance and intestinal villus height of Pekin ducks at 42 d. Serum immune indexes and fecal short-chain fatty acids (SCFAs) were all improved at both 21 d and 42 d after C. butyricum addition. The mRNA expression levels of Mucin2, Zonula occludens-1 (ZO-1), Caudin-3, and Occludin increased at 21 d and 42 d and the mRNA expression levels of IL-4 and IL-10 only increased at 42 d after C. butyricum addition. Dietary C. butyricum also resulted in an increase in the number of diversities of operational taxonomic units (OTUs), and an increase in the α-diversity of intestinal microbiota. The addition of C. butyricum altered the composition of the intestinal microbiota from 21 d to 42 d. The relative abundance of Firmicutes and Bacteroidetes showed little changes among groups; however, the relative abundance of Firmicutes/Bacteroidetes were found to have been significantly different between the 21 d and 42 d. C. butyricum administration improved the intestinal health of Pekin ducks by increasing the diversity of intestinal microbiota, enhancing the SCFAs contents, and strengthening the intestinal barrier function and immune systems. The optimal dietary supplementation dosage was recommended as 400 mg/kg in the diet.


2021 ◽  
Author(s):  
Dingfa Wang ◽  
Luli Zhou ◽  
Hanlin Zhou ◽  
Guanyu Hou

Abstract Background: The effects of dietary supplementation with guava leaf extracts (GE) on growth performance, diarrhea and intestinal barrier function, as well as associated with its modulation of serum and fecal metabolic changes in weaned piglets challenged by enterotoxigenic Escherichia coli (ETEC) were investigated.Method: Fifty weaned piglets (Duroc × Yorkshire × Landrace) from 5 pens (2 piglets per pen) were randomly divided into five groups: blank control group (BC), negative control group (NC), or those supplemented with 50 mg kg-1 (S50), 100 mg kg-1 (S100), or 200 (S200) mg kg-1 diet GE, respectively. On day 4, all piglets (except for BC) were orally challenged with about 1.0 × 109 colony-forming units (CFU) enterotoxigenic ETEC. After 28-day trial, growth performance, diarrhea incidence, intestinal barrier function and metabolomics of serum and fecal were investigated.Results: We demonstrated that dietary supplementation with GE (50-200 mg kg-1) reduced diarrhea incidence of piglets and increased expression of intestinal tight junction proteins (ZO-1, Occludin, Claudin-1) (P < 0.05) and sodium hydrogen exchanger 3 (NHE3) (P < 0.05). Moreover, dietary supplementation with GE (50-200 mg kg-1) upregulated level of tetrahydrofolic acid (THF) and reversed higher level of nicotinamide-adenine dinucleotide phosphate (NADP) caused by ETEC in serum compared with NC group (P < 0.05), and enhanced antioxidant ability of piglets. In addition, dietary addition with GE (100 mg kg-1) reversed the lower level of L-pipecolic acid caused by ETEC in feces compared with NC group (P < 0.05), and decreased oxidative stress response of piglets. Further, there were no differences (P > 0.05) in the final weight, average daily feed intake (ADFI) and F/G among dietary groups during the overall period, and piglets in S50 group has the higher average daily gain (ADG). Conclusion: Dietary supplementation with 50-200 mg kg-1 GE reduced diarrhea incidence of weaned piglets challenged by ETEC and exhibited positive effect on improving intestinal barrier function. Meanwhile, dietary addition with GE organized and redistributed energy resources through similar or dissimilar metabolic pathways, and finally enhanced antioxidant ability of piglets challenged by ETEC.


2013 ◽  
Vol 58 (No. 10) ◽  
pp. 470-478 ◽  
Author(s):  
M. Foltyn ◽  
V. Rada ◽  
M. Lichovníková ◽  
I. Šafařík ◽  
A. Lohniský ◽  
...  

The influence of different levels of extruded full-fat soybean (EFFSB) in the diet on growth performance, apparent ileal amino acids digestibility (AIAAD), intestinal morphology, and trypsin activity in digesta of broilers was determined. In the first experiment, two-hundred sixty ROSS 308 male chickens were used to investigate the effect of EFFSB on growth performance, intestinal morphology, and trypsin activity in the digesta and AIAAD. Five dietary treatments were used, containing 0, 40, 80, 120, and 160 g/kg of EFFSB. The experiment lasted from day 10 till day 38 of age. The inclusion of EFFSB at the level of 160 g/kg in the diet significantly (P &lt; 0.05) decreased final body weight (2443 g in 0 group vs. 2093 in 160 group) and worsened feed efficiency. AIAAD was lower when diet contained more than 40 g/kg EFFSB. But at the level of 160 g/kg AIAAD increased in several amino acids (threonine, isoleucine, leucine, histidine). Trypsin activity increased with increasing EFFSB in the diets. There were no significant (P &gt; 0.05) differences in AIAAD between groups 80, 120, and 160. Villus height (groups 0: 966.2; 4: 852.1; 8: 792.6; 12: 836.3; 16: 926.7 &micro;m) and crypt depth (groups&nbsp;0: 160.1; 4: 134.8; 8: 122.9; 12: 129.5; 16: 134.6 &micro;m) of ileum decreased with inclusion of EFFSB in the diet, but villi/crypt ratio increased. In the second experiment, male chickens ROSS 308 were divided into 4&nbsp;groups with 2 replicates per 100 chicks each. The groups were fed 0, 40, 80, and 120 g/kg of EFFSB. The experiment lasted from day 10 till day 38 of age. Final body weight (2594 g in 0 group vs. 2624 g in 120 group) was not significantly (P &gt; 0.05) affected by the diet. The study showed that EFFSB at the level of 120 g/kg in grower broiler diet had no adverse effect on performance. &nbsp;


mSystems ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Xiao Sun ◽  
Yalei Cui ◽  
Yingying Su ◽  
Zimin Gao ◽  
Xinying Diao ◽  
...  

ABSTRACT Weaning of piglets is accompanied by intestinal inflammation, impaired intestinal barrier function, and intestinal microflora disorder. Regulating intestinal microflora structure can directly or indirectly affect intestinal health and host growth and development. However, whether dietary fiber (DF) affects the inflammatory response and barrier function by affecting the intestinal microflora and its metabolites is unclear. In this study, we investigated the role of intestinal microflora in relieving immune stress and maintaining homeostasis using piglets with lipopolysaccharide (LPS)-induced intestinal injury as a model. DF improved intestinal morphology and barrier function, inhibited the expression of inflammatory signal pathways (Toll-like receptor 2 [TLR2], TLR4, and NF-κB) and proinflammatory cytokines (interleukin 1β [IL-1β], IL-6, and tumor necrosis factor alpha [TNF-α]), and upregulated the expression of barrier-related genes (encoding claudin-1, occludin, and ZO-1). The contents of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and the activity of diamine oxidase in plasma were decreased. Meanwhile, DF had a strong effect on the composition and function of intestinal microflora at different taxonomic levels, the relative abundances of cellulolytic bacteria and anti-inflammatory bacteria were increased, and the concentrations of propionate, butyrate, and total short-chain fatty acids (SCFAs) in intestinal contents were increased. In addition, the correlation analysis also revealed the potential relationship between metabolites and certain intestinal microflora, as well as the relationship between metabolites and intestinal morphology, intestinal gene expression, and plasma cytokine levels. These results indicate that DF improves intestinal barrier function, in part, by altering intestinal microbiota composition and increasing the synthesis of SCFAs, which subsequently alleviate local and systemic inflammation. IMPORTANCE Adding DF to the diet of LPS-challenged piglets alleviated intestinal and systemic inflammation, improved intestinal barrier function, and ultimately alleviated the growth retardation of piglets. In addition, the addition of DF significantly increased the relative abundance of SCFA-producing bacteria and the production of SCFAs. We believe that the improvement of growth performance of piglets with LPS-induced injury can be attributed to the beneficial effects of DF on intestinal microflora and SCFAs, which reduced the inflammatory response in piglets, improving intestinal barrier function and enhancing body health. These research results provide a theoretical basis and guidance for the use of specific fiber sources in the diet to improve intestinal health and growth performance of piglets and thus alleviate weaning stress. Our data also provide insights for studying the role of DF in regulating gastrointestinal function in human infants.


Sign in / Sign up

Export Citation Format

Share Document