Fractional order PI λ D μ controller design for satisfying time and frequency domain specifications simultaneously

2017 ◽  
Vol 68 ◽  
pp. 212-222 ◽  
Author(s):  
WeiJia Zheng ◽  
Ying Luo ◽  
XiaoHong Wang ◽  
YouGuo Pi ◽  
YangQuan Chen
Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1166 ◽  
Author(s):  
Eva-Henrietta Dulf

Classical fractional order controller tuning techniques usually establish the parameters of the controller by solving a system of nonlinear equations resulted from the frequency domain specifications like phase margin, gain crossover frequency, iso-damping property, robustness to uncertainty, etc. In the present paper a novel fractional order generalized optimum method for controller design using frequency domain is presented. The tuning rules are inspired from the symmetrical optimum principles of Kessler. In the first part of the paper are presented the generalized tuning rules of this method. Introducing the fractional order, one more degree of freedom is obtained in design, offering solution for practically any desired closed-loop performance measures. The proposed method has the advantage that takes into account both robustness aspects and desired closed-loop characteristics, using simple tuning-friendly equations. It can be applied to a wide range of process models, from integer order models to fractional order models. Simulation results are given to highlight these advantages.


2019 ◽  
Vol 41 (15) ◽  
pp. 4351-4357
Author(s):  
Chen Lanfeng ◽  
Xue Dingyu

Fractional-order calculus can obtain better results than the integer-order in control theory, so it has become a research hotspot in recent years. However, the structure of the irrational fractional-order system is complex, so its theoretical analysis and controller design are more difficult. In this paper, a method based on convolution integral is proposed to obtain the frequency domain response of the irrational model. Combined with the optimization algorithm, the model parameters are identified. Moreover, the rationalization of the irrational model is realized, which facilitates the analysis and application design of this kind models. Finally, two examples are given to illustrate the effectiveness and feasibility of the method by identifying parameters and rationalization.


2011 ◽  
Vol 403-408 ◽  
pp. 4859-4866 ◽  
Author(s):  
Saptarshi Das ◽  
Amitava Gupta ◽  
Shantanu Das

Generalization of the frequency domain robust tuning has been proposed in this paper for a family of fractional order (FO) PI/PID controllers. The controller tuning is enhanced with two new FO reduced parameter templates which are capable of capturing higher order process dynamics with much better accuracy. The paper validates the proposed methodology with a standard test-bench of higher order processes to show the relative merits of the family of FO controller structures.


Sign in / Sign up

Export Citation Format

Share Document