scholarly journals A polysaccharide deacetylase enhances bacterial adhesion in high ionic strength environments

iScience ◽  
2021 ◽  
pp. 103071
Author(s):  
Nelson K. Chepkwony ◽  
Yves V. Brun
2021 ◽  
Author(s):  
Nelson K Chepkwony ◽  
Yves V Brun

The adhesion of organisms to surfaces in aquatic environments provides a diversity of benefits such as better access to nutrients or protection from the elements or from predation. Differences in ionic strength, pH, temperature, shear forces, and other environmental factors impact adhesion and organisms have evolved various strategies to optimize their adhesins for their specific environmental conditions. We know essentially nothing about how bacteria evolved their adhesive mechanisms to attach efficiently in environments with different physico-chemical conditions. Many species of Alphaproteobacteria, including members of the order Caulobacterales, use a polar adhesin, called holdfast, for surface attachment and subsequent biofilm formation in both freshwater and marine environments. Hirschia baltica, a marine member of Caulobacterales, produces a holdfast adhesin that tolerates a drastically higher ionic strength than the holdfast produced by its freshwater relative, Caulobacter crescentus. In this work, we show that the holdfast polysaccharide deacetylase HfsH plays an important role in adherence in high ionic strength environments. We show that deletion of hfsH in H. baltica disrupts holdfast binding properties and structure. Increasing expression of HfsH in C. crescentus improved holdfast binding in high salinity, whereas lowering HfsH expression in H. baltica reduced holdfast binding at high ionic strength. We conclude that HfsH plays a role in modulating holdfast binding at high ionic strength and hypothesize that this modulation occurs through varied deacetylation of holdfast polysaccharides.


2019 ◽  
Author(s):  
Nelson K. Chepkwony ◽  
Cécile Berne ◽  
Yves V. Brun

ABSTRACTBacterial adhesion is affected by environmental factors, such as ionic strength, pH, temperature, and shear forces, and therefore marine bacteria must have developed holdfasts with different composition and structures than their freshwater counterparts to adapt to their natural environment. The dimorphic α-proteobacterium Hirschia baltica is a marine budding bacterium in the Caulobacterales clade. H. baltica uses a polar adhesin, the holdfast, located at the cell pole opposite the reproductive stalk for surface attachment and cell-cell adhesion. The holdfast adhesin has been best characterized in Caulobacter crescentus, a freshwater member of the Caulobacterales, and little is known about holdfast composition and properties in marine Caulobacterales. Here we use H. baltica as a model to characterize holdfast properties in marine Caulobacterales. We show that freshwater and marine Caulobacterales use similar genes in holdfast biogenesis and that these genes are highly conserved among the two genera. We also determine that H. baltica produces larger holdfast than C. crescentus and that those holdfasts have a different chemical composition, as they contain N-acetylglucosamine and galactose monosaccharide residues and proteins, but lack DNA. Finally, we show that H. baltica holdfasts tolerate higher ionic strength than those of C. crescentus. We conclude that marine Caulobacterales holdfasts have physicochemical properties that maximize binding in high ionic strength environments.IMPORTANCEMost bacteria spend a large amount of their lifespan attached to surfaces, forming complex multicellular communities called biofilms. Bacteria can colonize virtually any surface, therefore they have adapted to bind efficiently in very different environments. In this study, we compare the adhesive holdfasts produced by the freshwater bacterium C. crescentus and a relative, the marine bacterium H. baltica. We show that H. baltica holdfasts have a different morphology and chemical composition, and tolerate high ionic strength. Our results show that H. baltica holdfast is an excellent model to study the effect of ionic strength on adhesion and providing insights on the physicochemical properties required for adhesion in the marine environment.


2019 ◽  
Vol 201 (18) ◽  
Author(s):  
Nelson K. Chepkwony ◽  
Cécile Berne ◽  
Yves V. Brun

ABSTRACTBacterial adhesion is affected by environmental factors, such as ionic strength, pH, temperature, and shear forces. Therefore, marine bacteria must have developed adhesins with different compositions and structures than those of their freshwater counterparts to adapt to their natural environment. The dimorphic alphaproteobacteriumHirschia balticais a marine budding bacterium in the cladeCaulobacterales.H. balticauses a polar adhesin, the holdfast, located at the cell pole opposite the reproductive stalk, for surface attachment and cell-cell adhesion. The holdfast adhesin has been best characterized inCaulobacter crescentus, a freshwater member of theCaulobacterales, and little is known about holdfast compositions and properties in marineCaulobacterales. Here, we useH. balticaas a model to characterize holdfast properties in marineCaulobacterales. We show that freshwater and marineCaulobacteralesuse similar genes in holdfast biogenesis and that these genes are highly conserved among the species in the two genera. We determine thatH. balticaproduces a larger holdfast thanC. crescentusand that the holdfasts have different chemical compositions, as they containN-acetylglucosamine and galactose monosaccharide residues and proteins but lack DNA. Finally, we show thatH. balticaholdfasts tolerate higher ionic strength than those ofC. crescentus. We conclude that marineCaulobacteralesholdfasts have physicochemical properties that maximize binding in high-ionic-strength environments.IMPORTANCEMost bacteria spend a large part of their life spans attached to surfaces, forming complex multicellular communities called biofilms. Bacteria can colonize virtually any surface, and therefore, they have adapted to bind efficiently in very different environments. In this study, we compare the adhesive holdfasts produced by the freshwater bacteriumC. crescentusand a relative, the marine bacteriumH. baltica. We show thatH. balticaholdfasts have a different morphology and chemical composition and tolerate high ionic strength. Our results show that theH. balticaholdfast is an excellent model to study the effect of ionic strength on adhesion and provides insights into the physicochemical properties required for adhesion in the marine environment.


1976 ◽  
Vol 35 (01) ◽  
pp. 186-190 ◽  
Author(s):  
Eugen A. Beck ◽  
Peter Bachmann ◽  
Peter Barbier ◽  
Miha Furlan

SummaryAccording to some authors factor VIII procoagulant activity may be dissociable from carrier protein (MW~ 2 × 106) by agarose gel filtration, e.g. at high ionic strength. We were able to reproduce this phenomenon. However, addition of protease inhibitor (Trasylol) prevented the appearance of low molecular weight peak of factor VIII procoagulant activity both at high ionic strength and elevated temperature (37°C). We conclude from our results that procoagulant activity and carrier protein (von Willebrand factor, factor VIII antigen) are closely associated functional sites of native factor VIII macro molecule. Consequently, proteolytic degradation should be avoided in functional and structural studies on factor VIII and especially in preparing factor VIII concentrate for therapeutic use.


1978 ◽  
Vol 88 (2) ◽  
pp. 298-305 ◽  
Author(s):  
Peter Laurberg

ABSTRACT Thyroglobulin fractions rich and poor in new thyroglobulin were separated by means of DEAE-cellulose chromatography of dog thyroid extracts and by zonal ultracentrifugation in a sucrose gradient of guinea pig thyroid extract incubated at low temperature. The distribution of thyroxine, triiodothyronine and 3,3′,5′-(reverse)-triiodothyronine in hydrolysates of the different fractions was estimated by radioimmunoassays. Following DEAE-cellulose chromatography there was a small but statistically significant increase in the T4/T3 ratio in thyroglobulin fractions eluted at high ionic strength - that is fractions relatively rich in stable iodine but poor in fresh thyroglobulin. There were no differences in the T4/rT3 ratios between the different fractions. The ratios between iodothyronines were almost identical in the various thyroglobulin fractions following zonal ultracentrifugation in a sucrose gradient of cold treated guinea pig thyroid extract. These findings lend no support to the possibility that a relatively high content of triiodothyronines in freshly synthesized thyroglobulin modulates the thyroid secretion towards a preferential secretion of triiodothyronine and 3,3′,5′-(reverse)-triiodothyronine at the expense of the secretion of thyroxine.


2011 ◽  
Vol 87 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Bing Fang ◽  
Saugata Gon ◽  
Myoung Park ◽  
Kushi-Nidhi Kumar ◽  
Vincent M. Rotello ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Partha Das ◽  
Tadikonda Venkata Bharat

AbstractIn this work, we assess the self-sealing and swelling ability of the compacted granular bentonite (GB) under an inorganic salt environment and induced overburden stresses from the landfill waste. The laboratory permeation tests with high ionic strength salt solutions reveal that the GB fails to seal and exhibits a significant mechanical collapse under different applied stresses. The applicability of GB in the form of geosynthetic clay liners as the bottom liner facilities in landfills that produce high ionic strength salt leachates, therefore, remains a serious concern. We propose an additional barrier system based on kaolin, for the first time, to address this problem. The proposed kaolin-GB layered system performs satisfactorily in terms of its sealing and swelling ability even in adverse saline conditions and low overburden stresses. The kaolin improves the osmotic efficiency of the self and also helps the underlying GB layer to seal the inter-granular voids. The estimated design parameters by through-diffusion test suggest that the kaolin-GB layered system effectively attenuates the permeant flux and suitable as a landfill liner.


Bioanalysis ◽  
2020 ◽  
Author(s):  
Gregor Jordan ◽  
Alexander Pöhler ◽  
Florence Guilhot ◽  
Meike Zaspel ◽  
Roland F Staack

Aim: Antidrug antibody (ADA) assessment may be challenged in studies that involve the administration of high doses of biotherapeutics and/or with long half-lives. In such cases, ADA assays with optimized drug tolerance are desired. Material & Methods: We evaluated the use of MgCl2 to develop high ionic strength dissociation assays in two investigational examples (bridging enzyme-linked immunosorbent ADA assays) to attain high drug tolerance while maintaining best possible structural integrity of ADAs. Results: Both ADA-bridging assays treated with MgCl2 showed improved drug tolerance and higher signal-to-blank values compared with overnight incubation or acid treatment. Conclusion: The use of MgCl2 treatment in ADA-bridging assays provides a sensitive, drug tolerant and easy-to-use alternative in cases where acid dissociation is not possible or unwanted.


2020 ◽  
Vol 11 (16) ◽  
pp. 4246-4250 ◽  
Author(s):  
Sudhirkumar Shinde ◽  
Mona Mansour ◽  
Anil Incel ◽  
Liliia Mavliutova ◽  
Celina Wierzbicka ◽  
...  

Imprinting of an ion-pair in presence of mutually compatible anion and cation host monomers leads to polymers showing enhanced ion uptake in competitive high ionic strength buffers.


Sign in / Sign up

Export Citation Format

Share Document