scholarly journals Recapitulation of cell-like KRAS4b membrane dynamics on complex biomimetic membranes

iScience ◽  
2021 ◽  
pp. 103608
Author(s):  
Rebika Shrestha ◽  
De Chen ◽  
Peter Frank ◽  
Dwight V. Nissley ◽  
Thomas J. Turbyville
2013 ◽  
Vol 53 (supplement1-2) ◽  
pp. S142
Author(s):  
Neha Sharma ◽  
Pooja Gusain ◽  
Tsuyoshi Yoda ◽  
Masahiro Takagi

Author(s):  
K. Jacobson ◽  
A. Ishihara ◽  
B. Holifield ◽  
F. Zhang

Our laboratory is concerned with understanding the dynamic structure of the plasma membrane with particular reference to the movement of membrane constituents during cell locomotion. In addition to the standard tools of molecular cell biology, we employ both fluorescence recovery after photo- bleaching (FRAP) and digitized fluorescence microscopy (DFM) to investigate individual cells. FRAP allows the measurement of translational mobility of membrane and cytoplasmic molecules in small regions of single, living cells. DFM is really a new form of light microscopy in that the distribution of individual classes of ions, molecules, and macromolecules can be followed in single, living cells. By employing fluorescent antibodies to defined antigens or fluorescent analogs of cellular constituents as well as ultrasensitive, electronic image detectors and video image averaging to improve signal to noise, fluorescent images of living cells can be acquired over an extended period without significant fading and loss of cell viability.


2019 ◽  
Author(s):  
Zichen Wang ◽  
Huaxun Fan ◽  
Xiao Hu ◽  
John Khamo ◽  
Jiajie Diao ◽  
...  

<p>The receptor tyrosine kinase family transmits signals into cell via a single transmembrane helix and a flexible juxtamembrane domain (JMD). Membrane dynamics makes it challenging to study the structural mechanism of receptor activation experimentally. In this study, we employ all-atom molecular dynamics with Highly Mobile Membrane-Mimetic to capture membrane interactions with the JMD of tropomyosin receptor kinase A (TrkA). We find that PIP<sub>2 </sub>lipids engage in lasting binding to multiple basic residues and compete with salt bridge within the peptide. We discover three residues insertion into the membrane, and perturb it through computationally designed point mutations. Single-molecule experiments indicate the contribution from hydrophobic insertion is comparable to electrostatic binding, and in-cell experiments show that enhanced TrkA-JMD insertion promotes receptor ubiquitination. Our joint work points to a scenario where basic and hydrophobic residues on disordered domains interact with lipid headgroups and tails, respectively, to restrain flexibility and potentially modulate protein function.</p>


Author(s):  
Kazuaki Matoba ◽  
Nobuo N Noda

Summary Autophagy, which is an evolutionarily conserved intracellular degradation system, involves de novo generation of autophagosomes that sequester and deliver diverse cytoplasmic materials to the lysosome for degradation. Autophagosome formation is mediated by approximately 20 core autophagy-related (Atg) proteins, which collaborate to mediate complicated membrane dynamics during autophagy. To elucidate the molecular functions of these Atg proteins in autophagosome formation, many researchers have tried to determine the structures of Atg proteins by using various structural biological methods. Although not sufficient, the basic structural catalog of all core Atg proteins was established. In this review article, we summarize structural biological studies of core Atg proteins, with an emphasis on recently unveiled structures, and describe the mechanistic breakthroughs in autophagy research that have derived from new structural information.


2002 ◽  
Vol 43 (6) ◽  
pp. 885-894 ◽  
Author(s):  
Cecília M.P. Rodrigues ◽  
Susana Solá ◽  
Rui E. Castro ◽  
Pedro A. Laires ◽  
Dora Brites ◽  
...  

Author(s):  
Angelo Beratto-Ramos ◽  
Jorge Dagnino-Leone ◽  
José Martínez-Oyanedel ◽  
Mario Aranda ◽  
Rodrigo Bórquez

Author(s):  
Xuanling Li ◽  
Xing Liu ◽  
Xiaoyu Song ◽  
Yinmei Li ◽  
Ming Li ◽  
...  

Abstract Many cellular processes are orchestrated by dynamic changes in the plasma membrane to form membrane projections and endocytic vesicles in response to extracellular environmental changes. Our previous studies show that ARF6-ACAP4-ezrin signaling regulates membrane dynamics and curvature in response to EGF stimulation. However, there is no quantitative measurement to relate molecular organization of membrane cytoskeletal remodeling to stimulus-elicited mechanosensation on the plasma membrane. Optical tweezers is a powerful tool in the study of membrane tension. Comparing to pulling out an entire membrane tether at one time, the step-like method is more efficient because multiple relaxation curves can be obtained from one membrane tether. Fewer models describe relaxation curves to characterize mechanical properties of cell membrane. Here we establish a new method to measure the membrane relaxation curve of HeLa cells judged by the relationship between membrane tether diameter and tensions. We obtained effective viscosities and static tensions by fitting relaxation curves to our model. We noticed the delicate structure of relaxation curves contains information of cytoskeletal remodeling and lateral protein diffusion. Our study established a quantitative measure to characterize the mechanosensation of epithelial cells in response to stimulus-elicited membrane dynamics.


Author(s):  
Priyanka Madhu ◽  
Debapriya Das ◽  
Samrat Mukhopadhyay

The accumulation of toxic soluble oligomers of the amyloid-β peptide (Aβ) is a key step in the pathogenesis of Alzheimer’s disease. There are mainly two conformationally distinct oligomers, namely, prefibrillar...


Sign in / Sign up

Export Citation Format

Share Document