Large deflection analysis of FG-CNT reinforced composite pipes under thermal-mechanical coupling loading

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 886-900
Author(s):  
Hadi Babaei
2020 ◽  
Author(s):  
E. Rahimi ◽  
M.E. Golmakani ◽  
M. Sadeghian

Abstract In this work, large deflection behavior of a functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylindrical shell under internal pressure is studied. The composite cylindrical shell reinforced along the longitudinal direction and made from a polymeric matrix. Based on first-order shear deformation shell theory (FSDT) and von Kármán geometrical nonlinearity, the set of governing equations are derived. Using the dynamic relaxation (DR) technique, these systems of equations are solved for various boundary conditions and the roles of volume fraction of CNTs, CNTs distributions and geometrical ratios are examined on the responses.


2021 ◽  
Vol 11 (5) ◽  
pp. 2379
Author(s):  
Jeong-Hyeon Kim ◽  
Doo-Hwan Park ◽  
Seul-Kee Kim ◽  
Myung-Sung Kim ◽  
Jae-Myung Lee

The curved plate has been extensively used as a structural member in many industrial fields, especially the shipbuilding industry. The present study investigated the ultimate strength and collapse behavior of the simply supported curved plate under a longitudinal compressive load. To do this, experimental apparatuses for evaluating the buckling collapse test of the curved plates was developed. Then, a series of buckling collapse experiments was carried out by considering the flank angle, slenderness ratio, and aspect ratio of plates. To examine the fundamental buckling and collapse behavior of the curved plate, elastoplastic large deflection analysis was performed using the commercial finite element analysis program. On the basis of both the experimental and FE analysis, the effects of the flank angle, slenderness ratio, and aspect ratio on the characteristics of the buckling and collapse behavior of the curved plates are discussed. Finally, the empirical design formula for predicting the ultimate strength of curved plates was derived. The proposed empirical formula is a good indicator for estimating the behavior of the curved plate.


Sign in / Sign up

Export Citation Format

Share Document