Thermal regeneration study of high surface area activated carbon obtained from coconut shell: Characterization and application of response surface methodology

2013 ◽  
Vol 101 ◽  
pp. 53-60 ◽  
Author(s):  
André L. Cazetta ◽  
Osvaldo P. Junior ◽  
Alexandro M.M. Vargas ◽  
Aline P. da Silva ◽  
Xiaoxin Zou ◽  
...  
2017 ◽  
Vol 75 (9) ◽  
pp. 2047-2055 ◽  
Author(s):  
Thuan Van Tran ◽  
Quynh Thi Phuong Bui ◽  
Trinh Duy Nguyen ◽  
Van Thi Thanh Ho ◽  
Long Giang Bach

The present study focused on the application of response surface methodology to optimize the fabrication of activated carbon (AC) from sugarcane bagasse for adsorption of Cu2+ ion. The AC was synthesized via chemical activation with ZnCl2 as the activating agent. The central composite design based experiments were performed to assess the individual and interactive effect of influential parameters, including activation temperature, ZnCl2 impregnation ratio and activation time on the AC yield and removal of Cu2+ ion from the aqueous environment. The statistically significant, well-fitting quadratic regression models were successfully developed as confirmed by high F- and low P-values (<0.0001), high correlation coefficients and lack-of-fit tests. Accordingly, the optimum AC yield and removal efficiency of Cu2+ were predicted, respectively, as 48.8% and 92.7% which were approximate to the actual values. By applying the predicted optimal parameters, the AC shows a surprisingly high surface area of around 1,500 m2/g accompanied by large pore volume and narrow micropore size at low fabrication temperature.


Carbon ◽  
2010 ◽  
Vol 48 (10) ◽  
pp. 3005 ◽  
Author(s):  
Yong Chen ◽  
Liu-jiang Zhou ◽  
Yu-zhen Hong ◽  
Feng Cao ◽  
Ling Li ◽  
...  

2011 ◽  
Vol 174 (1) ◽  
pp. 117-125 ◽  
Author(s):  
André L. Cazetta ◽  
Alexandro M.M. Vargas ◽  
Eurica M. Nogami ◽  
Marcos H. Kunita ◽  
Marcos R. Guilherme ◽  
...  

Author(s):  
Mohamed M. Arêmou Daouda ◽  
Akuemaho V. Onésime Akowanou ◽  
S. E. Reine Mahunon ◽  
Chris K. Adjinda ◽  
Martin Pépin Aina ◽  
...  

2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
Victoria Ezeagwula ◽  
Precious Igbokwubiri

Abstract Bamboo trees are one of the fastest growing trees in tropical rainforests around the world, they have various uses ranging from construction to fly ash generation used in oil and gas cementing, to development of activated carbon which is one of the latest uses of bamboo trees. This paper focuses on development of activated carbon from bamboo trees for carbon capture and sequestration. The need for improved air quality becomes imperative as the SDG Goal 12 and SDG Goal13 implies. One of the major greenhouse gases is CO2 which accounts for over 80% of greenhouse gases in the environment. Eliminating the greenhouse gases without adding another pollutant to the environment is highly sought after in the 21st century. Bamboo trees are mostly seen as agricultural waste with the advent of scaffolding and other support systems being in the construction industry. Instead of burning bamboo trees or using them for cooking in the local communities which in turn generates CO2 and fly ash, an alternative was considered in this research work, which is the usage of bamboo trees to generate activated, moderately porous and high surface area carbon for extracting CO2 from various CO2 discharge sources atmosphere and for water purification. This paper focuses on the quality testing of activated carbon that can effectively absorb CO2. The porosity, pore volume, bulk volume, and BET surface area were measured. The porosity of the activated carbon is 27%, BET surface area as 1260m²/g. Fixed carbon was 11.7%, Volatility 73%, ash content 1.7%.


Sign in / Sign up

Export Citation Format

Share Document