Pyro-lytic de-oxygenation of waste cooking oil for green diesel production over Ag2O3-La2O3/AC nano-catalyst

2019 ◽  
Vol 137 ◽  
pp. 171-184 ◽  
Author(s):  
G. Abdulkareem-Alsultan ◽  
N. Asikin-Mijan ◽  
Nasar Mansir ◽  
H.V. Lee ◽  
Zulkarnain Zainal ◽  
...  
Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 210 ◽  
Author(s):  
Georgios Zafeiropoulos ◽  
Nikolaos Nikolopoulos ◽  
Eleana Kordouli ◽  
Labrini Sygellou ◽  
Kyriakos Bourikas ◽  
...  

The transformation of sunflower oil (SO) and waste cooking oil (WCO) into green diesel over co-precipitated nickel–zirconia catalysts was studied. Two series of catalysts were prepared. The first series included catalysts with various Ni loadings prepared using zirconium oxy-chloride, whereas the second series included catalysts with 60–80 wt % Ni loading prepared using zirconium oxy-nitrate as zirconium source. The catalysts were characterized and evaluated in the transformation of SO into green diesel. The best catalysts were also evaluated for green diesel production using waste cooking oil. The catalysts performance for green diesel production is mainly governed by the Ni surface exposed, their acidity, and the reducibility of the ZrO2. These characteristics depend on the preparation method and the Zr salt used. The presence of chlorine in the catalysts drawn from the zirconium oxy-chloride results to catalysts with relatively low Ni surface, high acidity and hardly reduced ZrO2 phase. These characteristics lead to relatively low activity for green diesel production, whereas they favor high yields of wax esters. Ni-ZrO2 catalysts with Ni loading in the range 60–80 wt %, prepared by urea hydrothermal co-precipitation method using zirconium oxy-nitrate as ZrO2 precursor salt exhibited higher Ni surface, moderate acidity, and higher reducibility of ZrO2 phase. The latter catalysts were proved to be very promising for green diesel production.


2020 ◽  
Author(s):  
Hemanandh Janarthanam ◽  
Venkatesan Sorakka Ponnappan ◽  
Ganesan Subbiah ◽  
Purushothaman Mani ◽  
D. Suman ◽  
...  

2021 ◽  
Vol 17 (1) ◽  
pp. 135-145
Author(s):  
Momodou Salieu Sowe ◽  
Arda Rista Lestari ◽  
Eka Novitasari ◽  
Masruri Masruri ◽  
Siti Mariyah Ulfa

Hydrodeoxygenation (HDO) is applied in fuel processing technology to convert bio-oils to green diesel with metal-based catalysts. The major challenges to this process are feedstock, catalyst preparation, and the production of oxygen-free diesel fuel. In this study, we aimed to synthesize Ni catalysts supported on silica-zirconia and alumina-zirconia binary oxides and evaluated their catalytic activity for waste cooking oil (WCO) hydrodeoxygenation to green diesel. Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2 were synthesized by wet-impregnation and hydrodeoxygenation of WCO was done using a modified batch reactor. The catalysts were characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDS), and N2 isotherm adsorption-desorption analysis. Gas chromatography - mass spectrometry (GC-MS) analysis showed the formation of hydrocarbon framework n-C15 generated from the use of Ni/Al2O3-ZrO2 with the selectivity of 68.97% after a 2 h reaction. Prolonged reaction into 4 h, decreased the selectivity to 58.69%. Ni/SiO2-ZrO2 catalyst at 2 h showed selectivity of 55.39% to n-C15. Conversely, it was observed that the reaction for 4 h increased selectivity to 65.13%. Overall, Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2 catalysts produced oxygen-free green diesel range (n-C14-C18) enriched with n-C15 hydrocarbon. Reaction time influenced the selectivity to n-C15 hydrocarbon. Both catalysts showed promising hydrodeoxygenation activity via the hydrodecarboxylation pathway. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


2020 ◽  
Author(s):  
Veeranna S. Hombalimath ◽  
Shameen Sultana M. Sultana ◽  
Sharanappa A. A. A ◽  
Anil R. Shet R. Shet ◽  
Laxmikant. R. patil R. Patil ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tadesse Anbessie Degfie ◽  
Tadios Tesfaye Mamo ◽  
Yedilfana Setarge Mekonnen

AbstractBiodiesel production from waste cooking oil (WCO) provides an alternative energy means of producing liquid fuels from biomass for various uses. Biodiesel production by recycling WCO and methanol in the presence of calcium oxide (CaO) nano-catalyst offers several benefits such as economic, environmental and waste management. A nano-catalyst of CaO was synthesized by thermal-decomposition method and calcinated at 500 °C followed by characterization using x-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. The XRD results revealed nano-scale crystal sizes at high purity, with a mean particle size of ~29 nm. The SEM images exhibited morphology of irregular shapes and porous structure of the synthesized nanocatalysts. The highest conversion of WCO to biodiesel was estimated to be 96%, at optimized experimental conditions i.e., 50 °C, 1:8 WCO oil to methanol ratio, 1% by weight of catalyst loading rate and 90 minutes reaction time, which is among few highest conversions reported so far. Biodiesel properties were tested according to the American (ASTM D6571) fuel standards. All reactions are carried-out under atmospheric pressure and 1500 rpm of agitation.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 750
Author(s):  
Nor Shafinaz Azman ◽  
Tengku Sharifah Marliza ◽  
Nurul Asikin Mijan ◽  
Taufiq Yap Yun Hin ◽  
Nozieana Khairuddin

Waste cooking oil (WCO) from palm oil is one of the most prospective biodiesel feedstock when compared to other oil seeds. Thus, WCO has great potential as a green source of diesel fuel for engines in motor vehicles and machinery. This project aimed to study the potential of three randomly selected types of WCO, namely; sample A (used 1× once to fry an egg), sample B (used 3–5× to fry salted fish), and sample C (used repeatedly to fry banana fritter) for the production of green diesel fuel over Ni-Mo/AC (nickel and molybdenum oxides incorporated with activated carbon) catalyst through the deoxygenation (DO) process. The prepared catalyst was characterized through X-ray diffraction (XRD), thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM). The DO process was performed at 350 °C to remove oxygen from the WCO samples. The liquid products were analysed by gas chromatography-mass spectrometer (GC-MS) and gas chromatography-flame ionization detector (GC-FID), to measure the yields of straight-chain hydrocarbons and fractions in the range C8‒C20. Results showed that the highest n-(C8‒C20) hydrocarbon fractions were produced in the order of sample B (89.93%) > C (88.84%) > A (82.81%).


Sign in / Sign up

Export Citation Format

Share Document