scholarly journals Developing Nickel–Zirconia Co-Precipitated Catalysts for Production of Green Diesel

Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 210 ◽  
Author(s):  
Georgios Zafeiropoulos ◽  
Nikolaos Nikolopoulos ◽  
Eleana Kordouli ◽  
Labrini Sygellou ◽  
Kyriakos Bourikas ◽  
...  

The transformation of sunflower oil (SO) and waste cooking oil (WCO) into green diesel over co-precipitated nickel–zirconia catalysts was studied. Two series of catalysts were prepared. The first series included catalysts with various Ni loadings prepared using zirconium oxy-chloride, whereas the second series included catalysts with 60–80 wt % Ni loading prepared using zirconium oxy-nitrate as zirconium source. The catalysts were characterized and evaluated in the transformation of SO into green diesel. The best catalysts were also evaluated for green diesel production using waste cooking oil. The catalysts performance for green diesel production is mainly governed by the Ni surface exposed, their acidity, and the reducibility of the ZrO2. These characteristics depend on the preparation method and the Zr salt used. The presence of chlorine in the catalysts drawn from the zirconium oxy-chloride results to catalysts with relatively low Ni surface, high acidity and hardly reduced ZrO2 phase. These characteristics lead to relatively low activity for green diesel production, whereas they favor high yields of wax esters. Ni-ZrO2 catalysts with Ni loading in the range 60–80 wt %, prepared by urea hydrothermal co-precipitation method using zirconium oxy-nitrate as ZrO2 precursor salt exhibited higher Ni surface, moderate acidity, and higher reducibility of ZrO2 phase. The latter catalysts were proved to be very promising for green diesel production.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Saima Noreen ◽  
Iqra Sahar ◽  
Nasir Masood ◽  
Munawar Iqbal ◽  
Muhammad Zahid ◽  
...  

Abstract This study focusses on the production of biodiesel by reacting the heterogeneous based nano-catalysts with used cooking oil in the presence of methanol. The CZO nanoparticles (NPs) were synthesized by co-precipitation method and characterized by different techniques. Biodiesel was characterized by the gas chromatograph (GC) and Fourier Transform Infra-red Spectroscopy (FTIR). Optimum conditions for the maximum biodiesel yield (90%) were 0.2% (w/w) catalyst dose, 3:1 methanol to oil ratio, 50 °C reaction temperature, 150 min reaction time and 136 rpm stirring speed. The kinetic modeling and the thermodynamic factors like enthalpy (ΔH), activation energy (Ea), entropy (ΔS) and free energy (ΔG) were operated on all the data. Mean and standard deviation was used for analysis of data. The results indicate the maximum biodiesel yield under the optimum reaction conditions, which is promising to reduce the pollution such as air pollution and greenhouse effect for sustainable environmetal development.


2019 ◽  
Vol 137 ◽  
pp. 171-184 ◽  
Author(s):  
G. Abdulkareem-Alsultan ◽  
N. Asikin-Mijan ◽  
Nasar Mansir ◽  
H.V. Lee ◽  
Zulkarnain Zainal ◽  
...  

2020 ◽  
Author(s):  
Hemanandh Janarthanam ◽  
Venkatesan Sorakka Ponnappan ◽  
Ganesan Subbiah ◽  
Purushothaman Mani ◽  
D. Suman ◽  
...  

2016 ◽  
Vol 6 (23) ◽  
pp. 8222-8233 ◽  
Author(s):  
Yujie Xie ◽  
Yun Guo ◽  
Yanglong Guo ◽  
Li Wang ◽  
Wangcheng Zhan ◽  
...  

The La0.4–MnOx catalyst prepared by using the co-precipitation method exhibited excellent activity and thermal stability for propane deep oxidation.


2009 ◽  
Vol 610-613 ◽  
pp. 1356-1359 ◽  
Author(s):  
Dan Kai ◽  
Hong Song Fan ◽  
Dong Xiao Li ◽  
Xiang Dong Zhu ◽  
Xing Dong Zhang

In the present study, three types of tetracalcium phosphate (TTCP) were prepared by solid-solid reaction or co-precipitation method and by different cooling modes. The effect of TTCP on the performance of calcium phosphate cement (CPC) was investigated. The result showed that the characteristic of TTCP varied with preparation method and played an important role in CPC performance. A solid-solid reacted TTCP yielded smaller particle size and resulted in bad workability and mechanical strength of CPC. The fast cooling of sintering TTCP by liquid nitrogen could avoid the decomposition of TTCP and make pure TTCP. TTCP prepared by wet-precipitation could improve performance of CPC and was promising to optimization of CPC.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6191
Author(s):  
Alexandra-Elisabeta Stamate ◽  
Rodica Zăvoianu ◽  
Octavian Dumitru Pavel ◽  
Ruxandra Birjega ◽  
Andreea Matei ◽  
...  

Mechanical activation and mechanochemical reactions are the subjects of mechanochemistry, a special branch of chemistry studied intensively since the 19th century. Herein, we comparably describe two synthesis methods used to obtain the following layered double hydroxide doped with cerium, Mg3Al0.75Ce0.25(OH)8(CO3)0.5·2H2O: the mechanochemical route and the co-precipitation method, respectively. The influence of the preparation method on the physico-chemical properties as determined by multiple techniques such as XRD, SEM, EDS, XPS, DRIFT, RAMAN, DR-UV-VIS, basicity, acidity, real/bulk densities, and BET measurements was also analyzed. The obtained samples, abbreviated HTCe-PP (prepared by co-precipitation) and HTCe-MC (prepared by mechanochemical method), and their corresponding mixed oxides, Ce-PP (resulting from HTCe-PP) and Ce-MC (resulting from HTCe-MC), were used as base catalysts in the self-condensation reaction of cyclohexanone and two Claisen–Schmidt condensations, which involve the reaction between an aromatic aldehyde and a ketone, at different molar ratios to synthesize compounds with significant biologic activity from the flavonoid family, namely chalcone (1,3-diphenyl-2-propen-1-one) and flavone (2-phenyl-4H-1benzoxiran-4-one). The mechanochemical route was shown to have indisputable advantages over the co-precipitation method for both the catalytic activity of the solids and the costs.


2021 ◽  
Vol 17 (1) ◽  
pp. 135-145
Author(s):  
Momodou Salieu Sowe ◽  
Arda Rista Lestari ◽  
Eka Novitasari ◽  
Masruri Masruri ◽  
Siti Mariyah Ulfa

Hydrodeoxygenation (HDO) is applied in fuel processing technology to convert bio-oils to green diesel with metal-based catalysts. The major challenges to this process are feedstock, catalyst preparation, and the production of oxygen-free diesel fuel. In this study, we aimed to synthesize Ni catalysts supported on silica-zirconia and alumina-zirconia binary oxides and evaluated their catalytic activity for waste cooking oil (WCO) hydrodeoxygenation to green diesel. Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2 were synthesized by wet-impregnation and hydrodeoxygenation of WCO was done using a modified batch reactor. The catalysts were characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDS), and N2 isotherm adsorption-desorption analysis. Gas chromatography - mass spectrometry (GC-MS) analysis showed the formation of hydrocarbon framework n-C15 generated from the use of Ni/Al2O3-ZrO2 with the selectivity of 68.97% after a 2 h reaction. Prolonged reaction into 4 h, decreased the selectivity to 58.69%. Ni/SiO2-ZrO2 catalyst at 2 h showed selectivity of 55.39% to n-C15. Conversely, it was observed that the reaction for 4 h increased selectivity to 65.13%. Overall, Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2 catalysts produced oxygen-free green diesel range (n-C14-C18) enriched with n-C15 hydrocarbon. Reaction time influenced the selectivity to n-C15 hydrocarbon. Both catalysts showed promising hydrodeoxygenation activity via the hydrodecarboxylation pathway. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3707 ◽  
Author(s):  
Mantha Gousi ◽  
Eleana Kordouli ◽  
Kyriakos Bourikas ◽  
Emmanouil Symianakis ◽  
Spyros Ladas ◽  
...  

A series of nickel–alumina catalysts promoted by copper containing 1, 2, and 5 wt. % Cu and 59, 58, and 55 wt. % Ni, respectively, (symbols: 59Ni1CuAl, 58Ni2CuAl, 55Ni5CuAl) and a non-promoted catalyst containing 60 wt. % Ni (symbol: 60NiAl) were prepared following a one-step co-precipitation method. They were characterized using various techniques (N2 sorption isotherms, XRD, SEM-EDX, XPS, H2-TPR, NH3-TPD) and evaluated in the selective deoxygenation of sunflower oil using a semi-batch reactor (310 °C, 40 bar of hydrogen, 96 mL/min hydrogen flow rate, and 100 mL/1 g reactant to catalyst ratio). The severe control of the co-precipitation procedure and the direct reduction (without previous calcination) of precursor samples resulted in mesoporous nano-structured catalysts (most of the pores in the range 3–5 nm) exhibiting a high surface area (192–285 m2 g−1). The promoting action of copper is demonstrated for the first time for catalysts with a very small Cu/Ni weight ratio (0.02–0.09). The effect is more pronounced in the catalyst with the medium copper content (58Ni2CuAl) where a 17.2% increase of green diesel content in the liquid products has been achieved with respect to the non-promoted catalyst. The copper promoting action was attributed to the increase in the nickel dispersion as well as to the formation of a Ni-Cu alloy being very rich in nickel. A portion of the Ni-Cu alloy nanoparticles is covered by Ni0 and Cu0 nanoparticles in the 59Ni1CuAl and 55Ni5CuAl catalysts, respectively. The maximum promoting action observed in the 58Ni2CuAl catalyst was attributed to the finding that, in this catalyst, there is no considerable masking of the Ni-Cu alloy by Ni0 or Cu0. The relatively low performance of the 55Ni5CuAl catalyst with respect to the other promoted catalysts was attributed, in addition to the partial coverage of Ni-Cu alloy by Cu0, to the remarkably low weak/moderate acidity and relatively high strong acidity exhibited by this catalyst. The former favors selective deoxygenation whereas the latter favors coke formation. Copper addition does not affect the selective-deoxygenation reactions network, which proceeds predominantly via the dehydration-decarbonylation route over all the catalysts studied.


Sign in / Sign up

Export Citation Format

Share Document