Changes in the near-surface soil freeze–thaw cycle on the Qinghai-Tibetan Plateau

Author(s):  
Xin Li ◽  
Rui Jin ◽  
Xiaoduo Pan ◽  
Tingjun Zhang ◽  
Jianwen Guo
2011 ◽  
Vol 91 (2) ◽  
pp. 223-233 ◽  
Author(s):  
Mario Tenuta ◽  
Brad Sparling

Tenuta, M. and Sparling, B. 2011. A laboratory study of soil conditions affecting emissions of nitrous oxide from packed cores subjected to freezing and thawing. Can. J. Soil Sci. 91: 223–233. A series of laboratory experiments using a packed core soil assay was carried out to test several soil conditions affecting the emission of N2O (nitrous oxide) during thawing of soil. The assay consisted of a sandy loam soil packed to 1.1 Mg m−3, moistened to 80% water-filled pore space, and temperature treated to 4 or −20°C for 2.5 d; the emissions from thawing soil were then determined as the differences in N2O release rates of the temperature-treated soils when placed at 15°C. Nitrate addition to surface soil (0–10 cm) enhanced thaw emission. Thaw emissions, averaged for deeper collected soil (10–30 and 30–60 cm), was 0.3% with NO3− treatment and 1.2% without NO3− treatment of that for surface soil treated similarly. Higher thaw emission for surface soil was related to greater organic matter and microbial biomass C contents and denitrifying enzyme activity than deeper collections of soil. Increasing the bulk density of soil from 1.1, 1.2, and 1.25 Mg m−3 decreased thaw emission. A second freeze-thaw cycle of the highest compaction treatment resulted in an emission of 2.3% of the first freeze-thaw cycle. Acetylene increased thaw emission of N2O and more so for NO3− untreated than treated soil. Using the acetylene inhibition method, the N2O:N2 ratio of gas produced was higher for frozen (0.17) than cold (0.07) treated soil, respectively, without the addition of NO3−. The addition of NO3− increased the N2O:N2 ratio of gas produced with the ratio being 2.45 and 0.53 for frozen and cold-treated soil. The results are consistent with biological denitrification being a source of N2O with conditions promoting N2O production rather than consumption enhancing thaw emissions.


2021 ◽  
Author(s):  
Ning Li ◽  
Lan Cuo ◽  
Yongxin Zhang

Abstract Changes in the freeze–thaw cycles of shallow soil have important consequences for surface and subsurface hydrology, land–atmosphere energy and moisture interaction, carbon exchange, and ecosystem diversity and productivity. This work examines the shallow soil freeze–thaw cycle on the Tibetan Plateau (TP) using in–situ soil temperature observations in 0–20 cm soil layer during July 1982 – June 2017. The domain and layer averaged beginning frozen day is November 18 and delays by 2.2 days per decade; the ending frozen day is March 9 and advances by 3.2 days per decade; the number of frozen days is 109 and shortens by 5.2 days per decade. Altitude and latitude combined could explain the spatial patterns of annual mean freeze–thaw status well. Stations located near 0–ºC contour line experienced dramatic changes in freeze–thaw cycles as seen from subtropical mountain coniferous forest in the southern TP. Soil completely freezes from surface to 20–cm depth in 15 days while completely thaws in 10 days on average. Near–surface soil displays more pronounced changes than deeper soil. Surface air temperature strongly influences the shallow soil freeze – thaw status but snow exerts limited effects. Different thresholds in freeze–thaw status definition lead to differences in the shallow soil freeze–thaw status and multiple–consecutive–day approach appears to be more robust and reliable. Gridded soil temperature products could resolve the spatial pattern of the observed shallow soil freeze–thaw status to some extent but further improvement is needed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Longxiao Chen ◽  
Kesheng Li ◽  
Guilei Song ◽  
Deng Zhang ◽  
Chuanxiao Liu

AbstractRock deterioration under freeze–thaw cycles is a concern for in-service tunnel in cold regions. Previous studies focused on the change of rock mechanical properties under unidirectional stress, but the natural rock mass is under three dimensional stresses. This paper investigates influences of the number of freeze–thaw cycle on sandstone under low confining pressure. Twelve sandstone samples were tested subjected to triaxial compression. Additionally, the damage characteristics of sandstone internal microstructure were obtained by using acoustic emission (AE) and mercury intrusion porosimetry. Results indicated that the mechanical properties of sandstone were significantly reduced by freeze–thaw effect. Sandstone’ peak strength and elastic modulus were 7.28–37.96% and 6.38–40.87% less than for the control, respectively. The proportion of super-large pore and large pore in sandstone increased by 19.53–81.19%. We attributed the reduced sandstone’ mechanical properties to the degenerated sandstone microstructure, which, in turn, was associated with increased sandstone macropores. The macroscopic failure pattern of sandstone changed from splitting failure to shear failure with an increasing of freeze–thaw cycles. Moreover, the activity of AE signal increased at each stage, and the cumulative ringing count also showed upward trend with the increase of freeze–thaw number.


2021 ◽  
Vol 28 (3) ◽  
pp. 954-967
Author(s):  
Jie-lin Li ◽  
Long-yin Zhu ◽  
Ke-ping Zhou ◽  
Hui Chen ◽  
Le Gao ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Huren Rong ◽  
Jingyu Gu ◽  
Miren Rong ◽  
Hong Liu ◽  
Jiayao Zhang ◽  
...  

In order to study the damage characteristics of the yellow sandstone containing pores under the freeze-thaw cycle, the uniaxial compression test of saturated water-stained yellow sandstones with different freeze-thaw cycles was carried out by rock servo press, the microstructure was qualitatively analyzed by Zeiss 508 stereo microscope, and the microdamage mechanism was quantitatively studied by using specific surface area and pore size analyzer. The mechanism of weakening mechanical properties of single-hole yellow sandstone was expounded from the perspective of microstructure. The results show the following. (1) The number of freeze-thaw cycles and single-pore diameter have significant effects on the strength and elastic modulus of the yellow sandstone; the more the freeze-thaw cycles and the larger the pore size, the lower the strength of the yellow sandstone. (2) The damage modes of the yellow sandstone containing pores under the freeze-thaw cycle are divided into five types, and the yellow sandstone with pores is divided into two areas: the periphery of the hole and the distance from the hole; as the number of freeze-thaw cycles increases, different regions show different microscopic damage patterns. (3) The damage degree of yellow sandstone is different with freeze-thaw cycle and pore size. Freeze-thaw not only affects the mechanical properties of yellow sandstone but also accelerates the damage process of pores. (4) The damage of the yellow sandstone by freeze-thaw is logarithmic function, and the damage of the yellow sandstone is a power function. The damage equation of the yellow sandstone with pores under the freezing and thawing is a log-power function nonlinear change law and presents a good correlation.


Sign in / Sign up

Export Citation Format

Share Document