scholarly journals Strength and Microscopic Damage Mechanism of Yellow Sandstone with Holes under Freezing and Thawing

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Huren Rong ◽  
Jingyu Gu ◽  
Miren Rong ◽  
Hong Liu ◽  
Jiayao Zhang ◽  
...  

In order to study the damage characteristics of the yellow sandstone containing pores under the freeze-thaw cycle, the uniaxial compression test of saturated water-stained yellow sandstones with different freeze-thaw cycles was carried out by rock servo press, the microstructure was qualitatively analyzed by Zeiss 508 stereo microscope, and the microdamage mechanism was quantitatively studied by using specific surface area and pore size analyzer. The mechanism of weakening mechanical properties of single-hole yellow sandstone was expounded from the perspective of microstructure. The results show the following. (1) The number of freeze-thaw cycles and single-pore diameter have significant effects on the strength and elastic modulus of the yellow sandstone; the more the freeze-thaw cycles and the larger the pore size, the lower the strength of the yellow sandstone. (2) The damage modes of the yellow sandstone containing pores under the freeze-thaw cycle are divided into five types, and the yellow sandstone with pores is divided into two areas: the periphery of the hole and the distance from the hole; as the number of freeze-thaw cycles increases, different regions show different microscopic damage patterns. (3) The damage degree of yellow sandstone is different with freeze-thaw cycle and pore size. Freeze-thaw not only affects the mechanical properties of yellow sandstone but also accelerates the damage process of pores. (4) The damage of the yellow sandstone by freeze-thaw is logarithmic function, and the damage of the yellow sandstone is a power function. The damage equation of the yellow sandstone with pores under the freezing and thawing is a log-power function nonlinear change law and presents a good correlation.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yu Ye ◽  
Li Li ◽  
Xunjian Xu

The western part of our country is mostly alpine regions. The rock and soil have been in a strong natural freeze-thaw environment for a long time, and their physical and mechanical properties are easily affected by external loads and external surroundings. Changes due to the influence of the environment will inevitably produce freeze-thaw cycles, damage and destruction, expansion and fracture, etc., resulting in more stable factors than usual. However, there is a lack of theoretical and practical experience in freeze-thaw rocks, especially freeze-thaw hard rocks. Therefore, studying the physical and mechanical properties and damage characteristics of rocks in alpine regions under freeze-thaw cycles has important significance. This paper uses dacite in the alpine region to carry out a freeze-thaw cycle experiment in a variable temperature range. Freezing and thawing cycle test, uniaxial compression test, triaxial compression test, and electron microscope scanning of the rock in the indoor saturated state were carried out. Combining theory with experimental mechanics, freeze-thaw mechanics, and damage mechanics, we studied freeze-thaw cycle in three variable temperature ranges (−20°C–15°C; −30°C–15°C; −40°C–15°C), along with the physical and mechanical properties and damage characteristics of freeze-thaw dacite in the alpine region under cycling. The damage curve of the final theoretical model gradually approaches 1.0 with the increase of strain during the actual test. The rock sample after the medium failure still has a certain bearing capacity, and the rock sample is often destroyed before it reaches the theoretical failure strain.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Longxiao Chen ◽  
Kesheng Li ◽  
Guilei Song ◽  
Deng Zhang ◽  
Chuanxiao Liu

AbstractRock deterioration under freeze–thaw cycles is a concern for in-service tunnel in cold regions. Previous studies focused on the change of rock mechanical properties under unidirectional stress, but the natural rock mass is under three dimensional stresses. This paper investigates influences of the number of freeze–thaw cycle on sandstone under low confining pressure. Twelve sandstone samples were tested subjected to triaxial compression. Additionally, the damage characteristics of sandstone internal microstructure were obtained by using acoustic emission (AE) and mercury intrusion porosimetry. Results indicated that the mechanical properties of sandstone were significantly reduced by freeze–thaw effect. Sandstone’ peak strength and elastic modulus were 7.28–37.96% and 6.38–40.87% less than for the control, respectively. The proportion of super-large pore and large pore in sandstone increased by 19.53–81.19%. We attributed the reduced sandstone’ mechanical properties to the degenerated sandstone microstructure, which, in turn, was associated with increased sandstone macropores. The macroscopic failure pattern of sandstone changed from splitting failure to shear failure with an increasing of freeze–thaw cycles. Moreover, the activity of AE signal increased at each stage, and the cumulative ringing count also showed upward trend with the increase of freeze–thaw number.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Man Huang ◽  
Bin Tang ◽  
Jianliang Jiang ◽  
Renqiu Guan ◽  
Huajun Wang

The freeze-thaw duration is one of the important factors affecting the change of rock properties. However, this factor has not formed a unified standard in the freeze-thaw cycle test. This study uses saturated tuff samples taken from eastern Zhejiang, China, as research objects to explore the change law of the time required for the rock to reach a full freeze-thaw cycle. Measured results show that the total duration of the freeze-thaw cycle presents an increasing power function with the increase in the number of freeze-thaw cycles. The freezing process is divided into three phases: initial freezing, water-ice phase transition, and deep freezing. The melting process is also divided into three phases: initial melting, ice-water phase transition, and deep melting. The time required for the ice-water phase change stage of the melting process does not change with the increase in the number of freeze-thaw cycles, while the other stages increase as a power function. The proportion of duration of each stage in the freezing process does not change with the increase in the number of cycles. By contrast, the duration proportion of the initial melting phase in the melting process decreases, and the deep melting phase increases. Experimental results of the freeze-thaw cycles of tuff demonstrate that the freeze-thaw duration of the freeze-thaw cycles within 40 times can be set to 9 h. The freezing and melting processes are 6 and 3 h, respectively.


Author(s):  
P. Kalantari ◽  
M. Bernier ◽  
K. C. McDonal ◽  
J. Poulin

Seasonal terrestrial Freeze/Thaw cycle in Northern Quebec Tundra (Nunavik) was determined and evaluated with passive microwave observations. SMOS time series data were analyzed to examine seasonal variations of soil freezing, and to assess the impact of land cover on the Freeze/Thaw cycle. Furthermore, the soil freezing maps derived from SMOS observations were compared to field survey data in the region near Umiujaq. The objective is to develop algorithms to follow the seasonal cycle of freezing and thawing of the soil adapted to Canadian subarctic, a territory with a high complexity of land cover (vegetation, soil, and water bodies). Field data shows that soil freezing and thawing dates vary much spatially at the local scale in the Boreal Forest and the Tundra. The results showed a satisfactory pixel by pixel mapping for the daily soil state monitoring with a > 80% success rate with in situ data for the HH and VV polarizations, and for different land cover. The average accuracies are 80% and 84% for the soil freeze period, and soil thaw period respectively. The comparison is limited because of the small number of validation pixels.


2019 ◽  
Vol 9 (17) ◽  
pp. 3460 ◽  
Author(s):  
Qiang Du ◽  
Ting Pan ◽  
Jing Lv ◽  
Jie Zhou ◽  
Qingwei Ma ◽  
...  

Application of sandstone in cement-stabilized macadam (CSM) is an effective way to utilize sandstone. To determine the feasibility of using sandstone as a CSM aggregate, a series of experimental investigations, such as unconfined compressive strength (UCS) tests, Brazilian splitting tests and freeze-thaw cycle tests, were conducted on sandstone cement-stabilized macadam (SCSM). Three mixed variables, covering the cement content, aggregate type and curing period, were set as influence factors. The testing results indicated that the UCS, indirect tensile strength (ITS) and frost resistance property of the test-pieces increased with cement content and curing age. Considering the asphalt pavement design specifications for China, the UCS and ITS values of the SCSM complied with the requirements of light traffic road construction before freeze-thaw cycles. However, the SCSM subjected to freezing and thawing meets the requirements only when the cement content is 4.5%. Therefore, it is noteworthy that CSM containing sandstone aggregates should be applied with caution in cold region because of insufficient freeze resistance.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Chenchen Liu ◽  
Yibiao Liu ◽  
Weizhong Ren ◽  
Wenhui Xu ◽  
Simin Cai ◽  
...  

AbstractDue to the location of the Yungang Grottoes, freeze–thaw cycles contribute significantly to the degradation of the mechanical properties of the sandstone. The factors influencing the freeze–thaw cycle are classified into two categories: external environmental conditions and the inherent properties of the rock itself. Since the parameters of rock properties are inherent to each rock, the effect of rock properties on freeze–thaw degradation cannot be investigated by the control variates method. An adaptive multi-output gradient boosting decision trees (AMGBDT) algorithm is proposed to fit nonlinear relationships between mechanical properties and physical factors. The hyperparameters in the GBDT algorithm are set as variables, and the Sequential quadratic programming (SQP) algorithm is applied to solve the hyperparameter optimization, which means finding the maximum Score. The case study illustrates that the AMGBDT algorithm can precisely determine the effect of each independent factor on the output. The patterns of mechanical properties are similar when the number of freeze–thaw cycles and porosity are used as variables separately and when both are used simultaneously. The uniaxial compressive strength decay rate is positively correlated with the number of freeze–thaw cycles and porosity. The modulus of elasticity is negatively correlated with the number of freeze–thaw cycles and porosity. The results show that the number of freeze–thaw cycles is the main factor influencing the freeze–thaw cycling action, and the porosity is minor. In addition, the fitting accuracy of the AMGBDT algorithm is generally higher than neural networks (NN) and random forests (RF). Studying the influence of porosity and other rock properties on the freeze–thaw cycle will help to understand the failure mechanism of rock freeze–thaw cycles.


2018 ◽  
Vol 22 (1) ◽  
pp. 53-57
Author(s):  
Haibo Jiang

Under freeze-thaw cycles, the relationship between rock microstructure deterioration and its macroscopic mechanical characteristics has drawn extensive attention from engineers. With the objective to incorporate freeze-thaw cycle experiment into headrace tunnel engineering, in the present study two groups of andesite rock samples in different states are tested under the conditions of the lowest freezing temperature of –40 ℃ and the thawing temperature of 20 ℃. Damage detection was performed by magnetic resonance imaging for the interior microstructure of rock samples subject to different freeze-thaw cycles, and the relationship between the sample mechanical properties and gradual deterioration of rock microstructures was discussed. The results demonstrate evident influence of freeze-thaw cycle on the damage and deterioration of internal pore structure in andesite, and the rock uniaxial compressive strength and elasticity modulus exhibit a decreasing trend with the increase of freeze-thaw cycles. After 40 cycles, the strength of naturally saturated rock samples decreases by 39.4% (equivalent to 69.4 MPa) and the elasticity modulus drops by 47.46% (equivalent to 3.27 GPa). For rock samples saturated by vacuum, 40 freeze-thaw cycles lead to a decrease of 36.86% (equivalent to 58.2 MPa) in rock strength and a drop of 44.85% (equivalent to 2.83 GPa) in elasticity modulus. Therefore, the test results quantitatively elucidate the substantial influence of freeze-thaw cycle on the damage and deterioration of internal structure in andesite.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 372-373
Author(s):  
Mikhail A Zhilinsky ◽  
Evgeniya K Tomgorova ◽  
Baylar S Iolchiev ◽  
Anastasia N Vetokh ◽  
Hanum V Ashraf ◽  
...  

Abstract Sperm cryopreservation is one of the most important elements for the creation of genetic material cryobanks in order to preserve the gene pool of poultry. Cryopreservation methods and parameters directly affect the viability of germ cells after thawing. The effect of freeze-thaw cycles on biological usefulness of bird sperm was studied. Semen was frozen in paillettes. Thawing sperm was carried out at a temperature of 38 °С. Sperm activity was assessed using CASA technology “ARGUSSOFT”. Sperm motility after cryopreservation decreased in roosters, quails and guinea fowls by 62 ± 3 %, 66 ± 1 % and 60 ± 1 %, respectively. The proportion of live sperm also decreased: in roosters - from 89 ± 4 % to 48 ± 2 %, in quails - from 93 ± 3 % to 49 ± 3 %, in the guinea fowls - from 92 ± 2 % to 45 ± 4 %. As a result of freezing and thawing, the proportion of spermatozoa with abnormal morphology increased. A change in the frequency of anomalies occurrence in individual segments was observed. The number of spermatozoa with flagella pathology was increased. The proportion of sperm with pathology of the head, middle section and flagellum increased by 0.4 %, 0.4 % and 1.3 % (P ≤ 0.001) respectively, in the frozen-thawed samples of roosters, compared with the indicators established for a freshly obtained ejaculate. A similar trend was observed in other poultry types. Thus, the freeze-thaw cycle had a negative effect on the activity and viability of poultry spermatozoa. Supported by RSF No 16-16-04104.


Sign in / Sign up

Export Citation Format

Share Document