scholarly journals A methodology to estimate forest fires burned areas and burn severity degrees using Sentinel-2 data. Application to the October 2017 fires in the Iberian Peninsula

Author(s):  
Rafael Llorens ◽  
José Antonio Sobrino ◽  
Cristina Fernández ◽  
José M. Fernández-Alonso ◽  
José Antonio Vega
2021 ◽  
Author(s):  
Kim-Anh Nguyen ◽  
Yuei-An Liou ◽  
Le-Thu Ho

<p>Bushfire is one of the dangerous natural manmade hazards. It can cause great damges to the air quality, human health, environment and bio-diversity. In addition, forest fires may be a potential and signigicant source of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. In early 2020, Australia experienced serious bushfires with over an area of estimated 18.6 million hectares burned, over 5,900 buidlings (including 2, 779 homes) destroyed, and at least 34 people (including three fire fighters) and billion animals and some endangered species killed. Subsequently, air quality was degraded to hazardous levels. It was estimated that about 360 million tonnes of CO<sub>2</sub> was emitted as of 2 Jan. 2020 by NASA. Remote sensing data has been instrumental for the environmental monitoring in particular the bushfire. Many methods and algorithms have been proposed to detect the burned areas in the forest. However, it is challenging or even infeasible to routinely apply them by non-experts due to a chain of sophisticated schemes during their implementation. Here, we present a simple and effective method for mapping a burned area. The performances of different optical sensors and indices are conducted. Sentinel-2 MSI and Landsat 8 data are ultilized for the comparison of burned forest by analyzing different indices (including NDVI, NDBR and newly development index Nomarlized Difference Laten Heat Index (NDLI)). The forest damages are estimated over the Katoombar, Austrialia and the burning severity map is generated and classified into eight levels (none, high regrowth, lowregrowth, unburned, low severity, moderate low severity, moderate high severity, and high severity). The comparision in results from Sentinel-2 MSI data and Landsat image is performed and presented.</p>


2020 ◽  
Vol 12 (4) ◽  
pp. 708 ◽  
Author(s):  
Zhong Zheng ◽  
Jinfei Wang ◽  
Bo Shan ◽  
Yongjun He ◽  
Chunhua Liao ◽  
...  

In recent years, global forest fires have occurred more frequently, seriously destroying the structural functions of forest ecosystem. Mapping the burn severity after forest fires is of great significance for quantifying fire’s effects on landscapes and establishing restoration measures. Generally, intensive field surveys across burned areas are required for the effective application of traditional methods. Unfortunately, this requirement could not be satisfied in most cases, since the field work demands a lot of personnel and funding. For mapping severity levels across burned areas without field survey data, a semi-supervised transfer component analysis-based support vector regression model (SSTCA-SVR) was proposed in this study to transfer knowledge trained from other burned areas with field survey data. Its performance was further evaluated in various eco-type regions of southwestern United States. Results show that SSTCA-SVR which was trained on source domain areas could effectively be transferred to a target domain area. Meanwhile, the SSTCA-SVR could maintain as much spectral information as possible to map burn severity. Its mapped results are more accurate (RMSE values were between 0.4833 and 0.6659) and finer, compared to those mapped by ∆NDVI-, ∆LST-, ∆NBR- (RMSE values ranged from 0.7362 to 1.1187) and SVR-based models (RMSE values varied from 1.7658 to 2.0055). This study has introduced a potentially efficient mechanism to map burn severity, which will speed up the response of post-fire management.


Environments ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 36 ◽  
Author(s):  
Ana Teodoro ◽  
Ana Amaral

Forest areas in Portugal are often affected by fires. The objective of this work was to analyze the most fire-affected areas in Portugal in the summer of 2016 for two municipalities considering data from Landsat 8 OLI and Sentinel 2A MSI (prefire and postfire data). Different remote sensed data-derived indices, such as Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR), could be used to identify burnt areas and estimate the burn severity. In this work, NDVI was used to evaluate the area burned, and NBR was used to estimate the burn severity. The results showed that the NDVI decreased considerably after the fire event (2017 images), indicating a substantial decrease in the photosynthesis activity in these areas. The results also indicate that the NDVI differences (dNDVI) assumes the highest values in the burned areas. The results achieved for both sensors regarding the area burned presented differences from the field data no higher than 13.3% (for Sentinel 2A, less than 7.8%). We conclude that the area burned estimated using the Sentinel 2A data is more accurate, which can be justified by the higher spatial resolution of this data.


2020 ◽  
Vol 17 (5) ◽  
pp. 854-858
Author(s):  
R. Lasaponara ◽  
A. M. Proto ◽  
A. Aromando ◽  
G. Cardettini ◽  
V. Varela ◽  
...  

Author(s):  
E. Çolak ◽  
A. F. Sunar

<p><strong>Abstract.</strong> A forest fire is stated as an ecological disaster whether it is man-made or caused naturally. İzmir is one of the regions where forest fires are most intensified in Turkey. The study area located at Aegean region of Turkey suffered two forest fires in 2017; Menderes and Bayındır areas. This study presents the integration of remote sensing (Sentinel 2 and Landsat 8 satellite images) and GIS data to map and evaluate the forest burned areas due to both forest fires. For this purpose, different indexes such as Burn Area Index (BAI), Mid Infrared Burn Index (MIRBI), Normalized Burn Ratio (NBR) and Normalized Burn Ratio Thermal (NBRT) Burn Index are applied besides different classification algorithms. The results showed that different vegetation types/zones are being affected. Sentinel 2 and Landsat 8 data are integrated to the GIS established with fieldwork data to analyse and also validate the results. Digital Elevation Model (DEM) data produced from ASTER satellite is also overlaid to the outcomes to emphasize the destructed forest areas. The efficiency of using two different satellites are outlined by comparing the accuracy of forest fire maps produced.</p>


2019 ◽  
Author(s):  
Alexander R. Brown ◽  
George Petropoulos ◽  
Konstantinos P. Ferentinos

The recent launch of Sentinel missions offers a unique opportunity to assess the impacts of wildfires at higher spatial and spectral resolution provided by those Earth Observing systems. Herein, an assessment of the Sentinel-1 &amp; 2 to map burnt areas has been conducted. Initially the use of Sentinel-2 solely was explored, and then in combination with Sentinel-1 and derived radiometric indices. As a case study, the large wildfire occurred in Pedrógão Grande, Portugal in 2017 was used. Burnt area estimates from the European Forest Fires Information System (EFFIS) were used as reference. Burnt area was delineated using the Maximum Likelihood (ML) and Support Vector Machines (SVMs) classifiers, and two multi-index methods. Following this, burn severity was assessed using SVMs and Artificial Neural Networks (ANNs), again for both standalone Sentinel-2 data and in combination with Sentinel-1 and spectral indices. Soil erosion predictions were evaluated using the Revised Universal Soil Loss Equation (RUSLE) model. The effect of the land cover derived from CORINE operational product was also evaluated across the burnt area and severity maps. SVMs produced the most accurate burnt area map, resulting a 94.8% overall accuracy and a Kappa coefficient of 0.90. SVMs also achieved the highest accuracy in burn severity levels estimation, with an overall accuracy of 77.9% and a kappa of 0.710. From an algorithmic perspective, implementation of the techniques applied herein, is based on EO imagery analysis provided nowadays globally at no cost. It is also robust and adaptable, being potentially integrated with other high EO data available. All in all, our study contributes to the understanding of Mediterranean landscape dynamics and corroborates the usefulness of Sentinels data in wildfire studies.


2019 ◽  
Vol 12 (1) ◽  
pp. 24 ◽  
Author(s):  
Meng Liu ◽  
Sorin Popescu ◽  
Lonesome Malambo

Accurately mapping burned areas is crucial for the analysis of carbon emissions and wildfire risk as well as understanding the effects of climate change on forest structure. Burned areas have predominantly been mapped using optical remote sensing images. However, the structural changes due to fire also offer opportunities for mapping burned areas using three-dimensional (3D) datasets such as Light detection and ranging (LiDAR). This study focuses on the feasibility of using photon counting LiDAR data from National Aeronautics and Space Administration’s (NASA) Ice, Cloud, and land Elevation Satellite-2 (ICESat−2) mission to differentiate vegetation structure in burned and unburned areas and ultimately classify burned areas along mapped ground tracks. The ICESat−2 mission (launched in September 2018) provides datasets such as geolocated photon data (ATL03), which comprises precise latitude, longitude and elevation of each point where a photon interacts with land surface, and derivative products such as the Land Water Vegetation Elevation product (ATL08), which comprises estimated terrain and canopy height information. For analysis, 24 metrics such as the average, median and standard deviation of canopy height were derived from ATL08 data over forests burned by recent fires in 2018 in northern California and western New Mexico. A reference burn map was derived from Sentinel−2 images based on the differenced Normalized Burn Ratio (dNBR) index. A landcover map based on Sentinel−2 images was employed to remove non-forest classes. Landsat 8 based dNBR image and landcover map were also used for comparison. Next, ICESat−2 data of forest samples were classified into burned and unburned ATL08 100-m segments by both Random Forest classification and logistic regression. Both Sentinel−2 derived and Landsat 8 derived ATL08 samples got high classification accuracy, 83% versus 76%. Moreover, the resulting classification accuracy by Random Forest and logistic regression reached 83% and 74%, respectively. Among the 24 ICESat−2 metrics, apparent surface reflectance and the number of canopy photons were the most important. Furthermore, burn severity of each ATL08 segment was also estimated with Random Forest regression. R2 of predicted burn severity to observed dNBR is 0.61 with significant linear relationship and moderate correlation (r = 0.78). Overall, the reasonably high accuracies achieved in this study demonstrate the feasibility of employing ICESat−2 data in burned forest classification, opening avenues for improved estimation of burned biomass and carbon emissions from a 3D perspective.


2020 ◽  
Vol 57 ◽  
pp. 11-22
Author(s):  
Walter De Simone ◽  
Michele Di Musciano ◽  
Valter Di Cecco ◽  
Giorgia Ferella ◽  
Anna Rita Frattaroli

Wildfires are currently one of the most important environmental problems, as they cause disturbance in ecosystems generating environmental, economic and social costs. The Sentinel-2 from Copernicus Program (Sentinel satellites) offers a great tool for post-fire monitoring. The main objective of this study is to evaluate the potential of Sentinel-2 in a peculiar mountainous landscape by measuring and identifying the burned areas and monitor the short-term response of the vegetation in different ‘burn severity’ classes. A Sentinel-2 dataset was created, and pre-processing operations were performed. Relativized Burn Ratio (RBR) was calculated to identify ‘burn scar’ and discriminate the ‘burn severity’ classes. A two-year monitoring was carried out with areas identified based on different severity classes, using Normalized Difference Vegetation Index (NDVI) to investigate the short-term vegetation dynamics of the burned habitats; habitats refer to Annex I of the European Directive 92/43/EEC. The study area is located in ‘Campo Imperatore’ within the Gran Sasso – Monti della Laga National Park (central Italy). The first important result was the identification and quantification of the area affected by fire. The RBR allowed us to identify even the less damaged habitats with high accuracy. The survey highlighted the importance of these Open-source tools for qualitative and quantitative evaluation of fires and the short-term assessment of vegetation recovery dynamics. The information gathered by this type of monitoring can be used by decision-makers both for emergency management and for possible environmental restoration of the burned areas.


2021 ◽  
Vol 13 (8) ◽  
pp. 1509
Author(s):  
Xikun Hu ◽  
Yifang Ban ◽  
Andrea Nascetti

Accurate burned area information is needed to assess the impacts of wildfires on people, communities, and natural ecosystems. Various burned area detection methods have been developed using satellite remote sensing measurements with wide coverage and frequent revisits. Our study aims to expound on the capability of deep learning (DL) models for automatically mapping burned areas from uni-temporal multispectral imagery. Specifically, several semantic segmentation network architectures, i.e., U-Net, HRNet, Fast-SCNN, and DeepLabv3+, and machine learning (ML) algorithms were applied to Sentinel-2 imagery and Landsat-8 imagery in three wildfire sites in two different local climate zones. The validation results show that the DL algorithms outperform the ML methods in two of the three cases with the compact burned scars, while ML methods seem to be more suitable for mapping dispersed burn in boreal forests. Using Sentinel-2 images, U-Net and HRNet exhibit comparatively identical performance with higher kappa (around 0.9) in one heterogeneous Mediterranean fire site in Greece; Fast-SCNN performs better than others with kappa over 0.79 in one compact boreal forest fire with various burn severity in Sweden. Furthermore, directly transferring the trained models to corresponding Landsat-8 data, HRNet dominates in the three test sites among DL models and can preserve the high accuracy. The results demonstrated that DL models can make full use of contextual information and capture spatial details in multiple scales from fire-sensitive spectral bands to map burned areas. Using only a post-fire image, the DL methods not only provide automatic, accurate, and bias-free large-scale mapping option with cross-sensor applicability, but also have potential to be used for onboard processing in the next Earth observation satellites.


Sign in / Sign up

Export Citation Format

Share Document