The effect of surface oxidation behavior on the fracture toughness of Ti–5Al–5Mo–5V–1Cr–1Fe titanium alloy

2015 ◽  
Vol 647 ◽  
pp. 740-749 ◽  
Author(s):  
Xiaohui Shi ◽  
Weidong Zeng ◽  
Qinyang Zhao
1989 ◽  
Vol 97 (1131) ◽  
pp. 1409-1411 ◽  
Author(s):  
Hideo SEKO ◽  
Fumihiro WAKAI ◽  
Yosoo MATSUNO ◽  
Akira SAWAOKA

2020 ◽  
Vol 55 (5) ◽  
pp. 633-642
Author(s):  
I. V. Vlasov ◽  
V. Ye. Yegorushkin ◽  
V. Ye. Panin ◽  
A. V. Panin ◽  
O. B. Perevalova

Alloy Digest ◽  
1969 ◽  
Vol 18 (6) ◽  

Abstract Ti-5A1-4FeCr is an alpha-beta type titanium alloy recommended for airframe components. It responds to an age-hardening heat treatment. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-58. Producer or source: Titanium alloy mills.


Alloy Digest ◽  
2001 ◽  
Vol 50 (8) ◽  

Abstract TIMETAL 829 is a Ti-5.5Al-3.5Sn-3Zr-1Nb-0.25Mo-0.3Si near-alpha titanium alloy that is weldable and has high strength and is a creep resistant high temperature alloy. The major application is as gas turbine engine components. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on forming and heat treating. Filing Code: TI-118. Producer or source: Timet.


Alloy Digest ◽  
2007 ◽  
Vol 56 (10) ◽  

Abstract Timetal 685 is a titanium alloy with 6 Al, 5 Zr, 0.5 Mo, and 0.25 Si. It is a near-alpha alloy with high strength and creep resistance. Applications are in the aerospace industry. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and shear strength as well as fracture toughness and creep. It also includes information on forming, heat treating, and joining. Filing Code: TI-142. Producer or source: Timet.


2016 ◽  
Vol 116 (5) ◽  
pp. 797-802 ◽  
Author(s):  
Nuno Guilherme ◽  
Chandur Wadhwani ◽  
Cheng Zheng ◽  
Kwok-Hung Chung

2011 ◽  
Vol 109 (8) ◽  
pp. 083515 ◽  
Author(s):  
A. Caron ◽  
P. Sharma ◽  
A. Shluger ◽  
H.-J. Fecht ◽  
D. V. Louzguine-Luzguin ◽  
...  

2006 ◽  
Vol 321-323 ◽  
pp. 913-916
Author(s):  
Sang Ll Lee ◽  
Yun Seok Shin ◽  
Jin Kyung Lee ◽  
Jong Baek Lee ◽  
Jun Young Park

The microstructure and the mechanical property of liquid phase sintered (LPS) SiC materials with oxide secondary phases have been investigated. The strength variation of LPS-SiC materials exposed at the elevated temperatures has been also examined. LPS-SiC materials were sintered at the different temperatures using two types of Al2O3/Y2O3 compositional ratio. The characterization of LPS-SiC materials was investigated by means of SEM with EDS, three point bending test and indentation test. The LPS-SiC material with a density of about 3.2 Mg/m3 represented a flexural strength of about 800 MPa and a fracture toughness of about 9.0 MPa⋅√m.


Sign in / Sign up

Export Citation Format

Share Document