Mechanical properties and high-temperature resistance of the hollow glass microspheres/borosilicate glass composite with different particle size

2017 ◽  
Vol 722 ◽  
pp. 321-329 ◽  
Author(s):  
Sue Ren ◽  
Xiutao Li ◽  
Xiuju Zhang ◽  
Xiqing Xu ◽  
Xue Dong ◽  
...  
2013 ◽  
Vol 678 ◽  
pp. 37-41 ◽  
Author(s):  
Sridhar Dalai ◽  
Savithri Vijayalakshmi ◽  
Pratibha Sharma

Hollow glass microspheres (HGMs) are a unique class of materials with interconnected pores in the microsphere walls, which can adsorb, retain and release hydrogen and other gases. In this study, HGMs was prepared from amber coloured and borosilicate glass frits. The glass frits after the preliminary washing and drying was sized to particles below 120 μm. The hollow glass microspheres were successfully fabricated from the glass powder by flame spheroidisation using air-acetylene flame. Effect of glass feed particle size as well as feed rate, in the formation of HGMs was studied. Glass feed particle size >75 μm and that <45 μm were found to give very poor yield of HGMs, whereas particles 50-75 μm gave very good yield for HGMs. Further study of the process parameters and constant monitoring to regulate the process are being carried out in our laboratory to arrive at a correct figure for the yield of HGMs. Characterisation of the HGMs prepared was done using Image analysing system, SEM, and XRD. The composition of the raw material and the product HGMs were determined using ICP-AES.


2018 ◽  
Vol 772 ◽  
pp. 33-37
Author(s):  
Nattakarn Hongsriphan ◽  
Pajaera Patanathabutr ◽  
Kanyakarn Lappokachai

Recycled poly (ethylene terephthalate) or R-PET is conventionally melt blended with polycarbonate with the presence of chain extender in order to produce polymer blend that provides good mechanical properties and cost effectiveness. This research was carried out to improve properties of such a blend by compounding them with silane treated hollow glass microspheres (HGMs), which mixing procedure was emphasized how it could affect mechanical properties. R-PET/PC/HGM composites of a fixed composition were melt compounded with three different mixing procedures. It was found that the compounding HGMs with PC and then R-PET obtained the most rigidity specimens than the all-in-one compounding or the compounding HGMs with R-PET and then PC. Silane treated HGMs were well distributed in the polymer matrix presenting good interfacial adhesion. However, the notched impact strength of all composites were inspected to be in the same range.


2007 ◽  
Vol 280-283 ◽  
pp. 701-706 ◽  
Author(s):  
Kenichi Sodeyama ◽  
Yoshio Sakka

Hollow glass microspheres named expanded perlite have been prepared from perlite, but the size is usually above 20 µm. In the conventional preparation method, it is difficult to produce fine expanded perlite with particle size under 20 µm because the water contained in finely milled perlite particle, which is the origin of foaming, is evolved during heating process. A new fluidized sand-bedfurnace has developed and fine expanded perlite particles with particle size less than 15 µm and bulk density under 0.5 g/cm3 are prepared successfully. Using the fine expanded perlite, lightweight composites with alumina and lightweight pottery are successfully prepared by colloidal processing and subsequent heating.


2019 ◽  
Vol 967 ◽  
pp. 267-273
Author(s):  
Subaer ◽  
Abdul Haris ◽  
Noor Afifah Kharisma ◽  
Nur Akifah ◽  
Risna Zulwiyati

The main objective of this study is to investigate the thermo-mechanical properties of composite made from geopolymer/carbon fiber/TiO2 NPs. The composite was fabricated from geopolymer based on metakaolin added with carbon fibers as reinforcement and TiO2 NPs as self-cleaning agent. The thermal properties of the composite was examined by subjecting the samples to temperature up to 750OC for 4 hours. The mechanical properties of the resulting materials were measured by using flexural and tensile strength measurements. The experimental results showed that the compsite exhibited high temperature resistance and the addition of carbon fiber were increase the flexural as well as the tensile strength of the composite.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 624 ◽  
Author(s):  
Adriano Vignali ◽  
Salvatore Iannace ◽  
Giulio Falcone ◽  
Roberto Utzeri ◽  
Paola Stagnaro ◽  
...  

In this work, novel composites based on poly(ε-caprolactone) (PCL) were prepared and characterized in terms of morphological, thermal, rheological and mechanical properties. Hollow glass microspheres (HGM), alone or surface modified by treatment with (3-aminopropyl)triethoxysilane (APTES) in order to enhance the compatibility between the inorganic particles and the polymer matrix, were used to obtain lightweight composites with improved properties. The silanization treatment implies a good dispersion of filler particles in the matrix and an enhanced filler–polymer adhesion. The addition of HGM to PCL has relevant implications on the rheological and mechanical properties enhancing the stiffness of the material. Furthermore, the presence of HGM strongly interferes with the crystallization behavior and thermo-oxidative degradation of PCL. The increase of PCL crystallization rate was observed as a function of the HGM amount in the composites. Finally, rotational molding tests demonstrated the possibility of successfully producing manufactured goods in PCL and PCL-based composites on both a laboratory and industrial scale.


Sign in / Sign up

Export Citation Format

Share Document