Structural and magnetic properties of La2NiMnO6 ceramic prepared by ultra-high pressure sintering

2018 ◽  
Vol 735 ◽  
pp. 2486-2490 ◽  
Author(s):  
H. Gan ◽  
C.B. Wang ◽  
L. Li ◽  
Q. Shen ◽  
L.M. Zhang
2020 ◽  
Vol 10 (24) ◽  
pp. 8786
Author(s):  
Paweł Głuchowski ◽  
Ruslan Nikonkov ◽  
Robert Tomala ◽  
Wiesław Stręk ◽  
Tatsiana Shulha ◽  
...  

The aim of the work was to check how the introduction of alkali and cobalt ions into a manganese structure can affect the structural disorder and, in consequence, lead to the changes (improvements) of magnetic properties. The high-pressure sintering technique was applied to check if the external factor can modify the magnetization of manganites. Nanocrystalline La0.9A0.1Mn0.9Co0.1O3 (where A is Li, K, Na) powders were synthesized by the combustion technique. The respective powders were used for nanoceramics preparation by the high-pressure sintering technique. The structure and morphology of the compounds were studied by X-ray powder diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Magnetization studies for all compounds were performed in order to check the changes induced by either codoping or the sintering pressure. It was found that the type of the dopant ion and sintering pressure produced significant changes to the magnetic properties of the studied compounds. Alkali ions lead to the stabilization of Co ions in the +2 oxidation state and the formation of positive exchange interactions Mn3+–Mn4+ and Co2+–Mn4+ and the subsequent increase in remanent magnetization. High sintering pressure leads to a decrease in grain size and reduction of long-range ferromagnetic order and lower magnetization.


2020 ◽  
Vol 10 (15) ◽  
pp. 5107 ◽  
Author(s):  
Changyun Li ◽  
Yasong Wang ◽  
Lei Xu ◽  
Yang Liu ◽  
Ningning Lu ◽  
...  

Graphite/6061 aluminum (G/6061Al) composites with different content of graphite were ultra-high pressure (UHP)-sintered and hot pressing (HP)-sintered, respectively. The result shows that homogeneous dispersion of graphite flakes in the 6061Al matrix can be achieved using graphite flakes coated by nano-Al particles, both in the UHP-sintered and in the HP-sintered composite. Due to the comprehensive effects of ultra-high pressure, high temperature and formation of Al4C3, the UHP-sintered composites endowed with higher relative density, higher hardness, stronger tensile strength and better wear resistance than the HP-sintered composite. The highest tensile strength of the UHP-sintered with 5 vol.% graphite is 183 MPa. Wear test reveals that the wear rate of the UHP sintered with 10 vol.% G/6061Al decreases drastically when the sintering temperature is 650 °C or higher, which is one to three orders of magnitude lower than that of the HP-sintered. The lowest wear rate of the UHP sintered with 10 vol.% graphite is 0.15 × 10−5 g/mm, while that of the HP-sintered composite is 133 × 10−5 g/mm.


2020 ◽  
Vol 10 (20) ◽  
pp. 7363
Author(s):  
Lei Xu ◽  
Erkuo Yang ◽  
Yasong Wang ◽  
Changyun Li ◽  
Zhiru Chen ◽  
...  

Ultra high-pressure sintering (UHPS) was used to prepare AA6061/SiCp composites with different contents and the effect of sintering temperatures on microstructure and mechanical properties was investigated in this study. The results showed that a uniform distribution of nano-SiC particles (N-SiCp) is obtained by the UHPS method. With the increase in N-SiCp contents, the higher hardness and better wear resistance could be inspected. The interfacial reactions and Al4C3 phase appeared above 550 °C. The relative density of composites first increased and then decreased; with the temperature raising it reached 99.58% at 600 °C. The hardness and wear property showed the same trend with the hardness reaching 52 HRA and wear rate being 1.0 × 10−6 g/m at 600 °C. Besides, the wear mechanism of the composites is mainly composed of abrasive wear and adhesive wear.


2017 ◽  
Vol 722 ◽  
pp. 593-598 ◽  
Author(s):  
N.O. Golosova ◽  
D.P. Kozlenko ◽  
S.E. Kichanov ◽  
E.V. Lukin ◽  
H.-P. Liermann ◽  
...  

2020 ◽  
Vol 137 (4) ◽  
pp. 483-485
Author(s):  
A. Khaldi ◽  
A. Gueddim ◽  
N. Bouarissa ◽  
L. Tabourot

2014 ◽  
Vol 70 (a1) ◽  
pp. C762-C762
Author(s):  
Yoshihiro Tsujimoto ◽  
Yoshitaka Matsushita ◽  
Kazunari Yamaura ◽  
Tetsuo Uchikoshi

The development of transition metal oxides with perovskite-based structure has stimulated the search for mixed anion systems such as oxynitrides, oxyhalides and oxysulfides because incorporation of two different anions in one structure offers further opportunity to effectively induce chemical and physical properties that the pure oxides cannot possess. Such mixed anion phases, however, are difficult to be synthesized by a conventional high-temperature reaction. In this study, we have employed a high pressure technique to overcome this issue, and succeessfully synthesized a series of new layered oxhalide compounds. We present structural and magnetic properties of high-valent nickel oxyhalides Sr2NiO3X (X = F, Cl), and square-planar coordinated oxychlorides Sr2MO2Cl2 (Mn, Ni) and Ba2PdO2Cl2, isostructural with superconducting parent compund Ca2CuO2Cl2.


Sign in / Sign up

Export Citation Format

Share Document