Characterization of non-metallic inclusions and their influence on the mechanical properties of a FCC single-phase high-entropy alloy

2018 ◽  
Vol 763 ◽  
pp. 546-557 ◽  
Author(s):  
N. Choi ◽  
K.R. Lim ◽  
Y.S. Na ◽  
U. Glatzel ◽  
J.H. Park
2021 ◽  
Author(s):  
J. Shi ◽  
Y.W. Zhao ◽  
Chunli Jiang ◽  
Y.Z. Zhang ◽  
Dongli Zou ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 687-696
Author(s):  
Sachin Rai ◽  
Navin Chaurasiya ◽  
Pramod K. Yadawa

Consequent to the interaction potential model, the high-order elastic constants at high entropy alloys in single-phase quaternary ScTiZrHf have been calculated at different temperatures. Elastic constants of second order (SOECs) helps to determine other ultrasonic parameters. With the help of SOECs other elastic moduli, bulk modulus, shear modulus, Young’s modulus, Pugh’s ratio, elastic stiffness constants and Poisson’s ratio are estimated at room temperature for elastic and mechanical characterization. The other ultrasonic parameters are calculated at room temperature for elastic and mechanical characterization. The temperature variation of ultrasonic velocities along the crystal's z-axis is evaluated using SOECs. The temperature variation of the  average debye velocity and the thermal relaxation time (τ) are also estimated along this orientation axis. The ultrasonic properties correlated with elastic, thermal and mechanical properties which is temperature dependent is also discussed. The ultrasonic attenuation due to phonon – phonon (p-p) interactions is also calculated at different temperatures. In the study of ultrasonic attenuation such as a function of temperature, thermal conductivity appears to be main contributor and p- p interactions are the responsible reason of attenuation and found that the mechanical properties of the high entropy alloy ScTiZrHf are superior at room temperature.


2021 ◽  
pp. 130822
Author(s):  
J. Shi ◽  
Y.W. Zhao ◽  
C.L. Jiang ◽  
X. Wang ◽  
Y.Z. Zhang ◽  
...  

2017 ◽  
Vol 737 ◽  
pp. 44-49 ◽  
Author(s):  
Seung Min Oh ◽  
Sun Ig Hong

In the present study, the microstructural stability and mechanical properties of a MnFeCoNiCu alloy in which Cr was replaced by Cu from Cantor composition (CoCrFeMnNi) was studied. In the as-cast alloy, the dendrite arms are enriched with Cu and Mn and matrix between dendrite arms is enriched with Fe and Co. Ni was richer in the matrix, but also observed in the dendrite arms. Cu and Mn tend to segregate and solidify initially because the melting temperatures of Cu and Mn are lower than Fe and Co, resulting in the growth of Cu-Mn dendrite. After homogenization, the dendrites structure disappeared and grain boundaries are visible, indicating the segregated elements in the dendrite structure were homogenized. The presence of single phase FCC structure was confirmed after homogenization. The tensile strength of 1220 MPa with the ductility of 6 % was obtained in MnFeCoNiCu alloy.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 169 ◽  
Author(s):  
Sebastian Haas ◽  
Anna M. Manzoni ◽  
Fabian Krieg ◽  
Uwe Glatzel

High entropy or compositionally complex alloys provide opportunities for optimization towards new high-temperature materials. Improvements in the equiatomic alloy Al17Co17Cr17Cu17Fe17Ni17 (at.%) led to the base alloy for this work with the chemical composition Al10Co25Cr8Fe15Ni36Ti6 (at.%). Characterization of the beneficial particle-strengthened microstructure by scanning electron microscopy (SEM) and observation of good mechanical properties at elevated temperatures arose the need of accomplishing further optimization steps. For this purpose, the refractory metals hafnium and molybdenum were added in small amounts (0.5 and 1.0 at.% respectively) because of their well-known positive effects on mechanical properties of Ni-based superalloys. By correlation of microstructural examinations using SEM with tensile tests in the temperature range of room temperature up to 900 °C, conclusions could be drawn for further optimization steps.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 108-120
Author(s):  
Simone Barbarossa ◽  
Roberto Orrù ◽  
Valeria Cannillo ◽  
Antonio Iacomini ◽  
Sebastiano Garroni ◽  
...  

Due to their inherent chemical complexity and their refractory nature, the obtainment of highly dense and single-phase high entropy (HE) diborides represents a very hard target to achieve. In this framework, homogeneous (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, and (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2 ceramics with high relative densities (97.4, 96.5, and 98.2%, respectively) were successfully produced by spark plasma sintering (SPS) using powders prepared by self-propagating high-temperature synthesis (SHS). Although the latter technique did not lead to the complete conversion of initial precursors into the prescribed HE phases, such a goal was fully reached after SPS (1950 °C/20 min/20 MPa). The three HE products showed similar and, in some cases, even better mechanical properties compared to ceramics with the same nominal composition attained using alternative processing methods. Superior Vickers hardness and elastic modulus values were found for the (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2 and the (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2 systems, i.e., 28.1 GPa/538.5 GPa and 28.08 GPa/498.1 GPa, respectively, in spite of the correspondingly higher residual porosities (1.2 and 2.2 vol.%, respectively). In contrast, the third ceramic, not containing tantalum, displayed lower values of these two properties (25.1 GPa/404.5 GPa). However, the corresponding fracture toughness (8.84 MPa m1/2) was relatively higher. This fact can be likely ascribed to the smaller residual porosity (0.3 vol.%) of the sintered material.


Sign in / Sign up

Export Citation Format

Share Document