Corrigendum to “Effects of energy input during friction stir processing on microstructures and mechanical properties of aluminum/carbon nanotubes nanocomposites” [J. Alloy. Comp. 798 (2019) 523–530]

2019 ◽  
Vol 800 ◽  
pp. 550-551 ◽  
Author(s):  
Shuai Zhang ◽  
Gaoqiang Chen ◽  
Jinquan Wei ◽  
Yijun Liu ◽  
Ruishan Xie ◽  
...  
2010 ◽  
Vol 638-642 ◽  
pp. 35-40
Author(s):  
Terry R. McNelley ◽  
Srinivasan Swaminathan ◽  
E. Sarath Menon ◽  
J.Q. Su

Parameters for multi-pass FSP include the pattern of tool traverse and step-over distance between successive passes. Multi-pass FSP was conducted on as-cast NiAl bronze and as-cast AA5083 in order to modify stir zone (SZ) microstructures and mechanical properties. Highly refined and homogeneous SZ microstructures may be produced by FSP. Refined and equiaxed grain structures reflect recrystallization during FSP; mechanisms leading to homogenization by redistribution of microstructure constituents remain to be determined. Refined microstructures exhibit enhanced ambient-temperature properties and superplasticity at elevated temperatures.


Author(s):  
Chao Shi ◽  
Chao Liu ◽  
Kaizhen Zhu

Abstract AA7075 is a precipitation strengthened Al-Zn-Mg-Cu alloy which has been widely used. As a common way to repair AA7075 components, tungsten inert gas (TIG) cladding generates coarse grains and defects. In addition, the use of other types of filler wires could lead to insufficient rigidity and strength of the cladding layer. In the present work, friction stir processing (FSP) has been applied to the TIG cladding layer on AA7075 to study the effect of process parameters on microstructures and mechanical properties. The macro/micro structural characteristics, elemental distribution, microhardness distribution and tensile properties have been investigated. The macroscopic defects in TIG cladding layer are eliminated and the size of grains is decreases to around 6 μm by FSP. FSP reduces the compositional difference between the stir zone and the base material. Higher rotational speed promotes the grain refinement while the lower traverse speed benefits the microstructural uniformity. FSP on the TIG weld bead brings improvement in tensile properties and hardness. All the fractures for TIG+FSP samples occur at thermo-mechanically affected zone of the advancing side. The tensile strength of the stir zone increases from 424.2 to 442.8 MPa with the increase in rotational speed and traverse speed.


2020 ◽  
Vol 12 (4) ◽  
pp. 531-537 ◽  
Author(s):  
Hyun-Joon Park ◽  
Byung-Wook Ahn ◽  
Jae-Ha Kim ◽  
Jong-Gun Lee ◽  
Seung-Boo Jung

AA6061-T4 composites containing SiC and B4C particles were fabricated by friction stir processing (FSP) with an SKD11 tool. The microstructures and mechanical properties of the composites were investigated with various test methods. With the inclusion of ceramic particles, refined grains in the stir zone (SZ) were observed using a scanning electron microscope (SEM) and tunneling electron microscope (TEM). Because the ceramic particles facilitated grain refinement in the SZ via the pinning effect, the SZ with the particles had a much smaller grain size than the SZ without the particles. Vickers hardness test, tensile test and Charpy impact test were conducted to evaluate the mechanical properties. Mechanical properties of the SZ with the ceramic particles were improved relative to those of the SZ without the particles. Vickers hardness (from 50 to 90 HV), tensile strength (from 117 to 253 MPa) and Charpy impact absorbed energy (from 4.2 to 5.6 J) of the SZ increased with the addition of ceramic particles.


Sign in / Sign up

Export Citation Format

Share Document