P3-287: Carvedilol reduces Aβ oligomerization and improves spatial memory in mouse models of Alzheimer's disease

2009 ◽  
Vol 5 (4S_Part_14) ◽  
pp. P427-P427
Author(s):  
Jun Wang ◽  
Wei Zhao ◽  
Lap Ho ◽  
XJ Qian ◽  
Isabel Arrieta-Cruz ◽  
...  
2013 ◽  
Vol 106 ◽  
pp. 57-67 ◽  
Author(s):  
Chun-Ming Wang ◽  
Ming-Yan Liu ◽  
Fang Wang ◽  
Min-Jie Wei ◽  
Shuang Wang ◽  
...  

2010 ◽  
Vol 21 (3) ◽  
pp. 321-329 ◽  
Author(s):  
Zareen Amtul ◽  
David Westaway ◽  
David F. Cechetto ◽  
Richard F. Rozmahel

2021 ◽  
Vol 18 ◽  
Author(s):  
Nazanin Mirzaei ◽  
Nicola Davis ◽  
Tsz Wing Chau ◽  
Magdalena Sastre

: Astrocytes are fast climbing the ladder of importance in neurodegenerative disorders, particularly in Alzheimer’s disease (AD), with the prominent presence of reactive astrocytes sur- rounding amyloid β- plaques, together with activated microglia. Reactive astrogliosis, implying morphological and molecular transformations in astrocytes, seems to precede neurodegeneration, suggesting a role in the development of the disease. Single-cell transcriptomics has recently demon- strated that astrocytes from AD brains are different from “normal” healthy astrocytes, showing dys- regulations in areas such as neurotransmitter recycling, including glutamate and GABA, and im- paired homeostatic functions. However, recent data suggest that the ablation of astrocytes in mouse models of amyloidosis results in an increase in amyloid pathology as well as in the inflammatory profile and reduced synaptic density, indicating that astrocytes mediate neuroprotective effects. The idea that interventions targeting astrocytes may have great potential for AD has therefore emerged, supported by a range of drugs and stem cell transplantation studies that have successfully shown a therapeutic effect in mouse models of AD. In this article, we review the latest reports on the role and profile of astrocytes in AD brains and how manipulation of astrocytes in animal mod- els has paved the way for the use of treatments enhancing astrocytic function as future therapeutic avenues for AD.


2021 ◽  
pp. 153537022110568
Author(s):  
Natalia V Bobkova ◽  
Daria Y Zhdanova ◽  
Natalia V Belosludtseva ◽  
Nikita V Penkov ◽  
Galina D Mironova

Here, we found that functionally active mitochondria isolated from the brain of NMRI donor mice and administrated intranasally to recipient mice penetrated the brain structures in a dose-dependent manner. The injected mitochondria labeled with the MitoTracker Red localized in different brain regions, including the neocortex and hippocampus, which are responsible for memory and affected by degeneration in patients with Alzheimer's disease. In behavioral experiments, intranasal microinjections of brain mitochondria of native NMRI mice improved spatial memory in the olfactory bulbectomized (OBX) mice with Alzheimer’s type degeneration. Control OBX mice demonstrated loss of spatial memory tested in the Morris water maze. Immunocytochemical analysis revealed that allogeneic mitochondria colocalized with the markers of astrocytes and neurons in hippocampal cell culture. The results suggest that a non-invasive route intranasal administration of mitochondria may be a promising approach to the treatment of neurodegenerative diseases characterized, like Alzheimer's disease, by mitochondrial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document