IC-P-105: Uncovering The Relationship Between β-Amyloid and Glucose Metabolism in Mild Cognitive Impairment

2016 ◽  
Vol 12 ◽  
pp. P79-P80
Author(s):  
Felix Carbonell ◽  
Donald G. McLaren ◽  
Alex P. Zijdenbos ◽  
Barry J. Bedell
2016 ◽  
Vol 12 ◽  
pp. P516-P517
Author(s):  
Felix Carbonell ◽  
Donald G. McLaren ◽  
Alex P. Zijdenbos ◽  
Barry J. Bedell

2019 ◽  
Vol 16 (9) ◽  
pp. 852-860 ◽  
Author(s):  
Atsuko Eguchi ◽  
Noriyuki Kimura ◽  
Yasuhiro Aso ◽  
Kenichi Yabuuchi ◽  
Masato Ishibashi ◽  
...  

Background: The Montreal Cognitive Assessment (MoCA) test has high sensitivity and specificity for detecting mild cognitive impairment or early dementia. How the MoCA score relates to findings of positron emission tomography imaging, however, remains unclear. <p></p> Objective: This prospective study examined the relationship between the Japanese version of the MoCA (MoCA-J) test and brain amyloid deposition or cerebral glucose metabolism among subjects with mild cognitive impairment. <p></p> Methods: A total of 125 subjects with mild cognitive impairment underwent the MoCA-J test, and amyloid- and 18F-fluorodeoxyglucose- positron emission tomography. Linear correlation analysis and multiple linear regression analysis were conducted to investigate the relationship between the MoCA-J score and demographic characteristics, amyloid deposition, and cerebral glucose metabolism. Moreover, Statistical Parametric Mapping 8 was used for a voxel-wise regression analysis of the MoCA-J score and cerebral glucose metabolism. <p></p> Results: The MoCA-J score significantly correlated with age, years of education, and the Mini-Mental State Examination score. After adjusting for age, sex, and education, the MoCA-J score significantly correlated negatively with amyloid retention (β= -0.174, p= 0.031) and positively with cerebral glucose metabolism (β= 0.183, p= 0.044). Statistical Parametric Mapping showed that Japanese version of MoCA score correlated with glucose metabolism in the bilateral frontal and parietal lobes, and the left precuneus. <p></p> Conclusion: The total MoCA-J score correlated with amyloid deposition and frontal and parietal glucose metabolism in subjects with mild cognitive impairment. Our findings support the usefulness of the MoCA-J test for screening subjects at high risk for Alzheimer’s disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephanie Langella ◽  
◽  
Muhammad Usman Sadiq ◽  
Peter J. Mucha ◽  
Kelly S. Giovanello ◽  
...  

AbstractWith an increasing prevalence of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) in response to an aging population, it is critical to identify and understand neuroprotective mechanisms against cognitive decline. One potential mechanism is redundancy: the existence of duplicate elements within a system that provide alternative functionality in case of failure. As the hippocampus is one of the earliest sites affected by AD pathology, we hypothesized that functional hippocampal redundancy is protective against cognitive decline. We compared hippocampal functional redundancy derived from resting-state functional MRI networks in cognitively normal older adults, with individuals with early and late MCI, as well as the relationship between redundancy and cognition. Posterior hippocampal redundancy was reduced between cognitively normal and MCI groups, plateauing across early and late MCI. Higher hippocampal redundancy was related to better memory performance only for cognitively normal individuals. Critically, functional hippocampal redundancy did not come at the expense of network efficiency. Our results provide support that hippocampal redundancy protects against cognitive decline in aging.


2009 ◽  
Vol 24 (6) ◽  
pp. 854-862 ◽  
Author(s):  
Yoshiyuki Hosokai ◽  
Yoshiyuki Nishio ◽  
Kazumi Hirayama ◽  
Atsushi Takeda ◽  
Toshiyuki Ishioka ◽  
...  

2018 ◽  
Vol 315 (2) ◽  
pp. H284-H290 ◽  
Author(s):  
Raymond Q. Migrino ◽  
Seth Truran ◽  
Nina Karamanova ◽  
Geidy E. Serrano ◽  
Calvin Madrigal ◽  
...  

Clinical and preclinical studies have suggested a link between cardiovascular disease and dementia disorders, but the role of the collateral brain circulation in cognitive dysfunction remains unknown. We aimed to test the hypothesis that leptomeningeal arteriole (LMA) function and response to metabolic stressors differ among subjects with dementia, mild cognitive impairment (MCI), and normal cognition (CN). After rapid autopsy, LMAs were isolated from subjects with CN ( n = 10), MCI ( n = 12), or dementia [ n = 42, Alzheimer’s disease (AD), vascular dementia (VaD), or other dementia], and endothelial and smooth muscle-dependent function were measured at baseline and after exposure to β-amyloid (2 μM), palmitic acid (150 μM), or medin (5 μM) and compared. There were no differences among the groups in baseline endothelial function (maximum dilation to acetylcholine, CN: 74.1 ± 9.7%, MCI: 67.1 ± 4.8%, AD: 74.7 ± 2.8%, VaD: 72.0 ± 5.3%, and other dementia: 68.0 ± 8.0%) and smooth muscle-dependent function (CN: 93.4 ± 3.0%, MCI: 83.3 ± 4.1%, AD: 91.8 ± 1.7%, VaD: 91.7 ± 2.4%, and other dementia: 87.9 ± 4.9%). There was no correlation between last cognitive function score and baseline endothelial or smooth muscle-dependent function. LMA endothelial function and, to a lesser extent, smooth muscle-dependent function were impaired posttreatment with β-amyloid, palmitic acid, and medin. Posttreatment LMA responses were not different between subjects with CN/MCI vs. dementia. Baseline responses and impaired vasoreactivity after treatment with metabolic stressors did not differ among subjects with CN, MCI, and dementia. The results suggest that the cognitive dysfunction in dementia disorders is not attributable to differences in baseline brain collateral circulation function but may be influenced by exposure of the vasculature to metabolic stressors. NEW & NOTEWORTHY Here, we present novel findings that brain collateral arteriole function did not differ among subjects with normal cognition, mild cognitive impairment, and dementia (Alzheimer’s disease and vascular dementia). Although arteriole function was impaired by vascular stressors (β-amyloid, palmitic acid, and medin), responses did not differ between those with or without dementia. The cognitive dysfunction in dementia disorders is not attributable to differences in baseline brain collateral circulation function but may be influenced by vascular exposure to metabolic stressors.


2021 ◽  
Vol 18 ◽  
Author(s):  
Amir Ashraf-Ganjouei ◽  
Kamyar Moradi ◽  
Shahriar Faghani ◽  
AmirHussein Abdolalizadeh ◽  
Mohammadreza Khomeijani-Farahani ◽  
...  

Background: Mild cognitive impairment (MCI) is a state between normal cognition and dementia. However, MCI diagnosis does not necessarily guarantee the progression to dementia. Since no previous study investigated brain positron emission tomography (PET) imaging of MCI-- to-normal reversion, we provided PET imaging of MCI-to-normal reversion using the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Methods: We applied comprehensive neuropsychological criteria (NP criteria), consisting of mem- ory, language, and attention/executive function domains, to include patients with a baseline diagno- sis of MCI (n=613). According to the criteria, the year 1 status of the patients was categorized into three groups (reversion: n=105, stable MCI: n=422, conversion: n=86). Demographic, neuropsycho- logical, genetic, CSF, and cognition biomarker variables were compared between the groups. Addi- tionally, after adjustment for confounding variables, the deposition pattern of amyloid-β and cere- bral glucose metabolism were compared between three groups via AV45- and FDG-PET modali- ties, respectively. Results: MCI reversion rate was 17.1% during one year of follow-up. The reversion group had the lowest frequency of APOE ε4+ subjects, the highest CSF level of amyloid-β, and the lowest CSF levels of t-tau and p-tau. Neuropsychological assessments were also suggestive of better cognitive performance in the reversion group. Patients with reversion to normal state had higher glucose metabolism in bilateral angular and left middle/inferior temporal gyri, when compared to those with stable MCI state. Meanwhile, lower amyloid-β deposition at baseline was observed in the fron- tal and parietal regions of the reverted subjects. On the other hand, the conversion group showed lower cerebral glucose metabolism in bilateral angular and bilateral middle/inferior temporal gyri compared to the stable MCI group, whereas the amyloid-β accumulation was similar between the groups. Conclusions: This longitudinal study provides novel insight regarding the application of PET imag- ing in predicting MCI transition over time.


Sign in / Sign up

Export Citation Format

Share Document