P2-244: THE CORRELATION BETWEEN CSF AMYLOID BETA 1-42 LEVELS AND CSF VITAMIN D (25OHD) LEVELS IN PATIENTS WITH SPORADIC ALZHEIMER'S DISEASE

2006 ◽  
Vol 14 (7S_Part_14) ◽  
pp. P766-P766
Author(s):  
Erdinc Dursun ◽  
Merve Alaylıoğlu ◽  
Irem L. Atasoy ◽  
Busra Sengul ◽  
Ezgi Soncu Buyukiscan ◽  
...  
2016 ◽  
Vol 12 ◽  
pp. P561-P562
Author(s):  
Anindita Banerjee ◽  
Vineet Kumar Khemka ◽  
Debashree Roy ◽  
Aparajita Dhar ◽  
Tapan Kumar Sinha Roy ◽  
...  

2021 ◽  
Author(s):  
Elizabeth Levitis ◽  
Jacob W Vogel ◽  
Thomas Funck ◽  
Vladimir Halchinski ◽  
Serge Gauthier ◽  
...  

Amyloid-beta (Aβ) deposition is one of the hallmark pathologies in both sporadic Alzheimer's disease (sAD) and autosomal dominant Alzheimer's disease (ADAD), the latter of which is caused by mutations in genes involved in Aβ processing. Despite Aβ deposition being a centerpiece to both sAD and ADAD, some differences between these AD subtypes have been observed with respect to the spatial pattern of Aβ. Previous work has shown that the spatial pattern of Aβ in individuals spanning the sAD spectrum can be reproduced with high accuracy using an epidemic spreading model (ESM), which simulates the diffusion of Aβ across neuronal connections and is constrained by individual rates of Aβ production and clearance. However, it has not been investigated whether Aβ deposition in the rarer ADAD can be modeled in the same way, and if so, how congruent the spreading patterns of Aβ across sAD and ADAD are. We leverage the ESM as a data-driven approach to probe individual-level variation in the spreading patterns of Aβ across three different large-scale imaging datasets (2 SAD, 1 ADAD). We applied the ESM separately to the Alzheimer's Disease Neuroimaging initiative (N=737), the Open Access Series of Imaging Studies (N=510), and the Dominantly Inherited Alzheimer's Network (N=249), the latter two of which were processed using an identical pipeline. We assessed inter- and intra-individual model performance in each dataset separately, and further identified the most likely epicenter of Aβ spread for each individual. Using epicenters defined in previous work in sAD, the ESM provided moderate prediction of the regional pattern of Aβ deposition across all three datasets. We further find that, while the most likely epicenter for most Aβ-positive subjects overlaps with the default mode network, 13% of ADAD individuals were best characterized by a striatal origin of Aβ spread. These subjects were also distinguished by being younger than ADAD subjects with a DMN Aβ origin, despite having a similar estimated age of symptom onset. Together, our results suggest that most ADAD patients express Aβ spreading patters similar to those of sAD, but that there may be a subset of ADAD patients with a separate, striatal phenotype.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Mamdooh H. Ghoneum ◽  
Nesrine S. El Sayed

Alzheimer’s disease (AD) is a debilitating and irreversible brain disease that affects an increasing number of aged individuals, mandating the development of protective nutraceuticals. Biobran/MGN-3, an arabinoxylan from rice bran, has potent antioxidant, antiaging, and immunomodulatory effects. The aim of the present study was to investigate the protective effect of Biobran against sporadic Alzheimer’s disease (SAD). SAD was induced in mice via intracerebroventricular injection of streptozotocin (STZ) (3 mg/kg). STZ-treated mice were administered with Biobran for 21 days. The effects of Biobran on memory and learning were measured via the Morris water maze, novel object recognition, and Y-maze tests. Biomarkers for apoptosis, oxidative stress, and amyloidogenesis were measured using ELISA and western blot analysis. Histopathological examination was performed to confirm neuronal damage and amyloid-beta deposition. Biobran reversed the spatial memory deficit in SAD-induced mice, and it increased the expression of glutathione, reduced malondialdehyde, decreased IL-6, decreased intercellular adhesion molecule-1 (ICAM-1), and significantly increased nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant response element (ARE). Moreover, Biobran exerted a protective effect against amyloid-beta-induced apoptosis via the suppression of both cleaved caspase-3 and the proapoptotic protein Bax and via the upregulation of the antiapoptotic protein Bcl-2. Furthermore, it reduced the expression of forkhead box class O proteins. It could be concluded from this study that Biobran may be a useful nutritional antioxidant agent for protection against SAD through its activation of the gene expression of Nrf2/ARE, which in turn modulates the apoptotic and amyloidogenic pathways.


2010 ◽  
Vol 120 (2) ◽  
pp. 185-193 ◽  
Author(s):  
Erik Portelius ◽  
Nenad Bogdanovic ◽  
Mikael K. Gustavsson ◽  
Inga Volkmann ◽  
Gunnar Brinkmalm ◽  
...  

2011 ◽  
Vol 7 ◽  
pp. S321-S321
Author(s):  
Angela La Sala ◽  
Erika Talassi ◽  
Alessandra Codemo ◽  
Andrea Maria Chiamenti ◽  
Cristina Ruaro ◽  
...  

2002 ◽  
Vol 38 ◽  
pp. 37-49 ◽  
Author(s):  
Janelle Nunan ◽  
David H Small

The proteolytic processing of the amyloid-beta protein precursor plays a key role in the development of Alzheimer's disease. Cleavage of the amyloid-beta protein precursor may occur via two pathways, both of which involve the action of proteases called secretases. One pathway, involving beta- and gamma-secretase, liberates amyloid-beta protein, a protein associated with the neurodegeneration seen in Alzheimer's disease. The alternative pathway, involving alpha-secretase, precludes amyloid-beta protein formation. In this review, we describe the progress that has been made in identifying the secretases and their potential as therapeutic targets in the treatment or prevention of Alzheimer's disease.


Sign in / Sign up

Export Citation Format

Share Document