Diurnal and seasonal patterns of gas exchange and carbon gain contribution of leaves and stems of Justicia californica in the Sonoran Desert

2008 ◽  
Vol 72 (3) ◽  
pp. 127-140 ◽  
Author(s):  
C. Tinoco-Ojanguren
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 501d-501
Author(s):  
Jonathan N. Egilla ◽  
Fred T. Davies

Six endomycorrhiza isolates from the Sonoran Desert of Mexico [Desert-14(18)1, 15(9)1, 15(15)1, Palo Fierro, Sonoran, and G. geosporum] were evaluated with a pure isolate of Glomus intraradices for their effect on the growth and gas exchange of Hibiscus rosa-sinensis L. cv. Leprechaun under low phosphorus fertility (11 mg P/L). Rooted cuttings of Hibiscus plants were inoculated with the seven mycorrhiza isolates and grown for 122 days. Gas exchange measurements were made on days 26, 88, and 122 after inoculation, and plants were harvested on day 123 for growth analysis. Plants inoculated with the seven isolates had 70% to 80% root colonization at harvest. Plants inoculated with G. intraradices had significantly higher leaf, shoot and root dry matter (DM), leaf DM/area (P ≤ 0.05) than those inoculated with any of the six isolates, and greater leaf area (LA) than Desert-15(9)1 and 15(15)1. Uninoculated plants had significantly lower leaf, shoot, root DM, leaf DM/area and LA (P ≤ 0.05) than the inoculated plants. There were no differences among the seven isolates in any of the gas exchange parameters measured [photosynthesis (A) stomatal conductance (gs), the ratio of intercellular to external CO2 (ci/ca), A to transpiration (E) ratio (A/E)]. The relationship between inoculated and uninoculated plants in these gas exchange parameters were variable on day 122 after inoculation.


1995 ◽  
Vol 22 (3) ◽  
pp. 461 ◽  
Author(s):  
J Vadell ◽  
C Cabot ◽  
H Medrano

The effects of drought acclimation on the diurnal time courses of photosynthesis and related characters were studied in Trifolium subterraneum L. leaves during two consecutive late spring days. Leaf CO2 assimilation rate and transpiration rate followed irradiance variations in irrigated plants. Under drought, a bimodal pattern of leaf CO2 assimilation rate developed although stomatal conductance remained uniform and low. Instantaneous water-use efficiency was much higher in droughted plants during the early morning and late evening, while during the middle of the day it was close to the value of irrigated plants. Net carbon gain in plants under drought reached 40% of the carbon gain in irrigated plants with a significant saving of water (80%). Average data derived from midday values of leaf CO2 assimilation rates and instantaneous water-use efficiency did not provide good estimates of the daily carbon gain and water-use efficiency for droughted leaves. Coupled with the morphological changes as a result of acclimation to progressive drought, modifications of diurnal patterns of leaf gas exchange rates effectively contribute to a sustained carbon gain during drought. These modifications significantly improve water-use efficiency, mainly by enabling the plant to take advantage of morning and evening hours with high air humidity.


2001 ◽  
Vol 37 (2) ◽  
pp. 241-252 ◽  
Author(s):  
J. I. FAHL ◽  
M. L. C. CARELLI ◽  
H. C. MENEZES ◽  
P. B. GALLO ◽  
P. C. O. TRIVELIN

Gas exchange, leaf carbon isotope discrimination, growth, yield and beverage quality were evaluated for two Coffea arabica cultivars (Catuai and Mundo Novo), grafted on to C. canephora and C. congensis progenies growing in open fields. During the years 1994 to 1997, grafting resulted in an average increase in bean yield of 151 and 89% for Catuai and Mundo Novo respectively. As analysed by sensory analyses and by the ratio between the mono-isomers and di-isomers of caffeoylquinic acid, beverage quality of the C. arabica was not altered by grafting. Shoot growth was significantly greater in grafted plants, showing an increase of 52% in total leaf area compared with the non-grafted plants. Under conditions of water excess in the soil there was little difference in the transpiration and stomatal conductance rates between the grafted and non-grafted plants, but the net photosynthesis was higher in grafted plants. With an accentuated water deficit in the soil in the dry period, the grafted plants showed significantly higher transpiration and stomatal conductance rates than the non-grafted plants, and similar values to those of C. canephora. Carbon isotope discrimination was greater in the grafted plants, suggesting greater root hydraulic conductance. The results suggest that the better performance of the grafted plants during the dry period was due to the greater capacity of the root system of C. canephora to provide water to the shoot thereby maintaining greater gas exchange in the leaves and consequently a greater carbon gain.


Author(s):  
Hu Sun ◽  
Qi Shi ◽  
Ning-Yu Liu ◽  
Shi-Bao Zhang ◽  
Wei Huang

Fluctuating light (FL) and drought stress usually occur concomitantly. However, whether drought stress affects photosynthetic performance under FL remains unknown. Here, we measured gas exchange, chlorophyll fluorescence, and P700 redox state under FL in drought-stressed tomato (Solanum lycopersicum) seedlings. Drought stress significantly affected stomatal opening and mesophyll conductance after transition from low to high light and thus delayed photosynthetic induction under FL. Therefore, drought stress exacerbated the loss of carbon gain under FL. Furthermore, restriction of CO2 fixation under drought stress aggravated the over-reduction of photosystem I (PSI) upon transition from low to high light. The resulting stronger FL-induced PSI photoinhibition significantly supressed linear electron flow and PSI photoprotection. These results indicated that drought stress not only affected gas exchange under FL but also accelerated FL-induced photoinhibition of PSI. Furthermore, drought stress enhanced relative cyclic electron flow in FL, which partially compensated for restricted CO2 fixation and thus favored PSI photoprotection under FL. Therefore, drought stress has large effects on photosynthetic dark and light reactions under FL.


2021 ◽  
Author(s):  
Hu Sun ◽  
Qi Shi ◽  
Ning-Yu Liu ◽  
Shi-Bao Zhang ◽  
Wei Huang

Fluctuating light (FL) and drought stress usually occur concomitantly. However, whether drought stress affects photosynthetic performance under FL remains unknown. Here, we measured gas exchange, chlorophyll fluorescence, and P700 redox state under FL in drought-stressed tomato (Solanum lycopersicum) seedlings. Drought stress significantly affected stomatal opening and mesophyll conductance after transition from low to high light and thus delayed photosynthetic induction under FL. Therefore, drought stress exacerbated the loss of carbon gain under FL. Furthermore, restriction of CO2 fixation under drought stress aggravated the over-reduction of photosystem I (PSI) upon transition from low to high light. The resulting stronger FL-induced PSI photoinhibition significantly supressed linear electron flow and PSI photoprotection. These results indicated that drought stress not only affected gas exchange under FL but also accelerated FL-induced photoinhibition of PSI. Furthermore, drought stress enhanced relative cyclic electron flow in FL, which partially compensated for restricted CO2 fixation and thus favored PSI photoprotection under FL. Therefore, drought stress has large effects on photosynthetic dark and light reactions under FL.


1995 ◽  
Vol 22 (4) ◽  
pp. 615 ◽  
Author(s):  
DW Sheriff ◽  
JP Mattay

Seedlings of Pinus radiata were grown in a glasshouse in large pots with sand as the potting mix. They were kept well-watered and frequently supplied with nutrient solutions which contained different amounts of nitrogen for different treatments. Carbon assimilation and diffusive conductance of the foliage were measured under steady-state conditions at saturating light in all treatments. Experimental variables were leaf-air vapour pressure difference and leaf temperature at time of measurement. Data were fitted to a non-linear regression equation to examine responses of carbon assimilation, diffusive conductance, transpiration, assimilatory nitrogen-use efficiency, and assimilatory transpiration efficiency to foliar nitrogen concentration expressed on a leaf area basis ([N]), to leaf temperature, and to leaf-air vapour pressure (D). Parameters from the regression have been used to plot three-dimensional surfaces, so that simultaneous effects of experimental variables can be easily visualised. Carbon assimilation increased linearly with foliar [N], declined exponentially as D increased, and had a broad temperature optimum between c. 14 and 38�C. Diffusive conductance increased linearly with foliar [N], was related to the reciprocal of D, and declined as temperature increased. Using climatic vapour pressure deficit and air temperature data for Canberra, ACT, and for Mount Gambier, SA, and with the functions that had been fitted to experimental data, it was found that these regional climatic differences have potential for appreciably affecting carbon gain and water loss in the regions, which have P. radiata plantations. Predicted differences in carbon gain are of the order of reported differences in stem growth in the regions. This shows the need to take into account regional variation in climatic variables that strongly affect gas exchange when investigating regional differences in productivity.


2018 ◽  
Vol 15 (2) ◽  
pp. 491-505 ◽  
Author(s):  
Burkhard Büdel ◽  
Wendy J. Williams ◽  
Hans Reichenberger

Abstract. Biological soil crusts (biocrusts) are a common element of the Queensland (Australia) dry savannah ecosystem and are composed of cyanobacteria, algae, lichens, bryophytes, fungi and heterotrophic bacteria. Here we report how the CO2 gas exchange of the cyanobacteria-dominated biocrust type from Boodjamulla National Park in the north Queensland Gulf Savannah responds to the pronounced climatic seasonality and on their quality as a carbon sink using a semi-automatic cuvette system. The dominant cyanobacteria are the filamentous species Symplocastrum purpurascens together with Scytonema sp. Metabolic activity was recorded between 1 July 2010 and 30 June 2011, during which CO2 exchange was only evident from November 2010 until mid-April 2011, representative of 23.6 % of the 1-year recording period. In November at the onset of the wet season, the first month (November) and the last month (April) of activity had pronounced respiratory loss of CO2. The metabolic active period accounted for 25 % of the wet season and of that period 48.6 % was net photosynthesis (NP) and 51.4 % dark respiration (DR). During the time of NP, net photosynthetic uptake of CO2 during daylight hours was reduced by 32.6 % due to water supersaturation. In total, the biocrust fixed 229.09 mmol CO2 m−2 yr−1, corresponding to an annual carbon gain of 2.75 g m−2 yr−1. Due to malfunction of the automatic cuvette system, data from September and October 2010 together with some days in November and December 2010 could not be analysed for NP and DR. Based on climatic and gas exchange data from November 2010, an estimated loss of 88 mmol CO2 m−2 was found for the 2 months, resulting in corrected annual rates of 143.1 mmol CO2 m−2 yr−1, equivalent to a carbon gain of 1.7 g m−2 yr−1. The bulk of the net photosynthetic activity occurred above a relative humidity of 42 %, indicating a suitable climatic combination of temperature, water availability and light intensity well above 200 µmol photons m−2 s−1 photosynthetic active radiation. The Boodjamulla biocrust exhibited high seasonal variability in CO2 gas exchange pattern, clearly divided into metabolically inactive winter months and active summer months. The metabolic active period commences with a period (of up to 3 months) of carbon loss, likely due to reestablishment of the crust structure and restoration of NP prior to about a 4-month period of net carbon gain. In the Gulf Savannah biocrust system, seasonality over the year investigated showed that only a minority of the year is actually suitable for biocrust growth and thus has a small window for potential contribution to soil organic matter.


2006 ◽  
Vol 42 (2) ◽  
pp. 147-164 ◽  
Author(s):  
J. C. RONQUIM ◽  
C. H. B. A. PRADO ◽  
P. NOVAES ◽  
J. I. FAHL ◽  
C. C. RONQUIM

Three cultivars of Coffea arabica, Catuaí Vermelho IAC 81, Icatu Amarelo IAC 2944 and Obatã IAC 1669–20, were evaluated in relation to leaf gas exchange and potential photochemical efficiency of photosystem II under field conditions on clear and cloudy days in the wet season in southeast Brazil. Independent of levels of irradiance, leaf water potential (υleaf) values were always higher than the minimum required to affect daily net photosynthesis (PN). PN, stomatal conductance (gs), leaf transpiration (E) and the index of photochemical efficiency (Fv/Fm) declined on a clear day in all cultivars. The depression of leaf gas exchange and Fv/Fm (specially around midday) caused a strong decrease (about 70 %) in daily carbon gain on a clear day. Under cloudless conditions, gs and PN were correlated with the air vapour pressure deficit (VPDair), but not with photosynthetic photon flux density (PPFD) values. On a cloudy day, the daily carbon gain was barely limited by PPFD below 800 μmol m−2 s−1, the Fv/Fm values showed a slight decrease around midday, and gs and PN were positively correlated with PPFD but not with VPDair. By contrast, irrespective of the contrasting irradiance conditions during the day, PN and E were correlated with gs.


Sign in / Sign up

Export Citation Format

Share Document