Long-term variations of galactic cosmic rays in the past and future from observations of various solar activity characteristics

2006 ◽  
Vol 68 (11) ◽  
pp. 1161-1166 ◽  
Author(s):  
A.V. Belov ◽  
R.T. Gushchina ◽  
V.N. Obridko ◽  
B.D. Shelting ◽  
V.G. Yanke
Author(s):  
И. Ушаков ◽  
I. Ushakov ◽  
М. Васин ◽  
M. Vasin

Radiation situation for cosmonauts over long-term cosmic flights is caused by low-rate radiation of galactic cosmic rays and solar cosmic rays consisting of high-energy proton as well as heavy particles (Z>10) within 1-2 % that is exclusively a threat of stochastic radiation effects (small increase of cancer risk and decrease of mean life span) for men. During interplanetary expedition periods the small probability of raised solar activity there is a threat of exposure to astronauts at doses that cause deterministic radiation effects leading to the development of the disease as a clinical manifestation of radiation injuries,. In a similar scenario it is necessary to have available to cosmic ship anti-radiation countermeasures for cosmonaut protection. Among radioprotective equipment can be provided with radiation protective agents and partial shielding of body separate section providing the best condition for post-radiation repair of radiosensitive body tissues. Preparation B-190 (indralin) is the most perspective from a small numbers of other radioprotectors permitting for men administration. Besides high radioprotective efficacy and large broadness of protective action B-190 is well tolerated including the impact of extrem flight factors. Antiemetic agent latran (ondansetron) is most interesting among preparation for prophylaxis and reduction of prodromal radiation reaction. To accelerate post-radiation hematopoietic recovery after raised solar activity an administration of radiomitigators (riboxin et al.) is substantiated. Neupomax (neupogen) is recommended as a preparation for pathogenesis therapy of acute radiation syndrome. Possible consequences of long-term cosmic voyages for oxidative stress development are taken into consideration. On their basis of nNatural antioxidants, preparations and nutrients radiomodulators, fully qualitative nutrition including vegetable food enriched flavonoids, vitamins C, E and carotene potentially prevent a shorten of cosmonaut biological age induced by solar cosmic rays and galactic cosmic rays and stress factors of long-term cosmic voyages. Radiomodulators are low and non-toxic and have not side effects in recommended doses. Their radioprotective effect is directly induced by adaption reaction on cellular and organismic levels through gene expression modulation and in that way the increase of non-specific body tolerance. The implementation of radiomodulator action is possible through hormesis mechanism.


2001 ◽  
Vol 63 (18) ◽  
pp. 1923-1929 ◽  
Author(s):  
A.V. Belov ◽  
B.D. Shelting ◽  
R.T. Gushchina ◽  
V.N. Obridko ◽  
A.F. Kharshiladze ◽  
...  

Radiocarbon ◽  
2019 ◽  
Vol 61 (6) ◽  
pp. 1749-1754 ◽  
Author(s):  
Toru Moriya ◽  
Hiroko Miyahara ◽  
Motonari Ohyama ◽  
Masataka Hakozaki ◽  
Mirei Takeyama ◽  
...  

ABSTRACTProxy-based observations of solar activity in the past have revealed long-term variations, such as the Gleissberg cycle (~88 yr), de Vries cycle (~200 yr), and the Hallstatt cycle (~2000 yr). Such long-term variations of solar activity sometimes cause the disappearance of sunspots for several decades. Currently, solar activity is becoming weaker, and there is a possibility that another long-term sunspot minimum could occur. However, the detailed mechanism of the weakening in solar activity is unknown, and the prediction of solar activity is ambiguous. In this study, we investigate the transitions of solar cycle length before the onset of the Spoerer Minimum, the longest grand minimum in the past 2000 yr. We measured the 14C content in an asunaro tree (Thujopsis dolabrata) excavated at Shimokita Peninsula from 1368–1420 CE using the compact AMS system at Yamagata University. It is found that the solar cycle lengthened to be 14–16 yr from 2 cycles before the onset of the Spoerer Minimum.


2010 ◽  
Vol 50 (4) ◽  
pp. 436-442 ◽  
Author(s):  
R. T. Gushchina ◽  
A. V. Belov ◽  
V. N. Obridko ◽  
B. D. Shelting

1999 ◽  
Vol 23 (3) ◽  
pp. 471-474 ◽  
Author(s):  
M.V Alania ◽  
E.S Vernova ◽  
M.I Tyasto ◽  
D.G Baranov

2021 ◽  
Author(s):  
Kseniia Golubenko ◽  
Eugene Rozanov ◽  
Genady Kovaltsov ◽  
Ari-Pekka Leppänen ◽  
Ilya Usoskin

<p>We present the first results of modelling of the short-living cosmogenic isotope <sup>7</sup>Be production, deposition, and transport using the chemistry-climate model SOCOLv<sub>3.0</sub> aimed to study solar-terrestrial interactions and climate changes. We implemented an interactive deposition scheme,  based on gas tracers with and without nudging to the known meteorological fields. Production of <sup>7</sup>Be was modelled using the 3D time-dependent Cosmic Ray induced Atmospheric Cascade (CRAC) model. The simulations were compared with the real concentrations (activity) and depositions measurements of <sup>7</sup>Be in the air and water at Finnish stations. We have successfully reproduced and estimated the variability of the cosmogenic isotope <sup>7</sup>Be produced by the galactic cosmic rays (GCR) on time scales longer than about a month, for the period of 2002–2008. The agreement between the modelled and measured data is very good (within 12%) providing a solid validation for the ability of the SOCOL CCM to reliably model production, transport, and deposition of cosmogenic isotopes, which is needed for precise studies of cosmic-ray variability in the past. </p>


2018 ◽  
Vol 610 ◽  
pp. A28 ◽  
Author(s):  
S. Mancuso ◽  
C. Taricco ◽  
P. Colombetti ◽  
S. Rubinetti ◽  
N. Sinha ◽  
...  

Typical reconstructions of historic heliospheric magnetic field (HMF) BHMF are based on the analysis of the sunspot activity, geomagnetic data or on measurement of cosmogenic isotopes stored in terrestrial reservoirs like trees (14C) and ice cores (10Be). The various reconstructions of BHMF are however discordant both in strength and trend. Cosmogenic isotopes, which are produced by galactic cosmic rays impacting on meteoroids and whose production rate is modulated by the varying HMF convected outward by the solar wind, may offer an alternative tool for the investigation of the HMF in the past centuries. In this work, we aim to evaluate the long-term evolution of BHMF over a period covering the past twenty-two solar cycles by using measurements of the cosmogenic 44Ti activity (τ1∕2 = 59.2 ± 0.6 yr) measured in 20 meteorites which fell between 1766 and 2001. Within the given uncertainties, our result is compatible with a HMF increase from 4.87-0.30+0.24 nT in 1766 to 6.83-0.11+0.13 nT in 2001, thus implying an overall average increment of 1.96-0.35+0.43 nT over 235 years since 1766 reflecting the modern Grand maximum. The BHMF trend thus obtained is then compared with the most recent reconstructions of the near-Earth HMF strength based on geomagnetic, sunspot number, and cosmogenic isotope data.


Sign in / Sign up

Export Citation Format

Share Document