scholarly journals A simple upper bound for Lebesgue constants associated with Leja points on the real line

2022 ◽  
pp. 105699
Author(s):  
Vladimir Andrievskii ◽  
Fedor Nazarov
2001 ◽  
Vol 11 (04) ◽  
pp. 401-421 ◽  
Author(s):  
ALEJANDRO LÓPEZ-ORTIZ ◽  
SVEN SCHUIERER

We present lower bounds for on-line searching problems in two special classes of simple polygons called streets and generalized streets. In streets we assume that the location of the target is known to the robot in advance and prove a lower bound of [Formula: see text] on the competitive ratio of any deterministic search strategy—which can be shown to be tight. For generalized streets we show that if the location of the target is not known, then there is a class of orthogonal generalized streets for which the competitive ratio of any search strategy is at least [Formula: see text] in the L2-metric—again matching the competitive ratio of the best known algorithm. We also show that if the location of the target is known, then the competitive ratio for searching in generalized streets in the L1-metric is at least 9 which is tight as well. The former result is based on a lower bound on the average competitive ratio of searching on the real line if an upper bound of D to the target is given. We show that in this case the average competitive ratio is at least 9-O(1/ log D).


Author(s):  
Z. M. Franco ◽  
Hans G. Kaper ◽  
Man Kam Kwong ◽  
A. Zettl

SynopsisExplicit formulae and numerical values for upper and lower bounds for the best constant in Landau/s inequality on the real line are given. For p > 3, the value of the upper bound is less than the value of the best constant conjectured by Gindler and Goldstein (J. Analyse Math. 28 (1975), 213–238).


2016 ◽  
pp. 3973-3982
Author(s):  
V. R. Lakshmi Gorty

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the computer algebra system coded from MATLAB R2011b.


2000 ◽  
Vol 26 (1) ◽  
pp. 237
Author(s):  
Duszyński
Keyword(s):  

1982 ◽  
Vol 8 (1) ◽  
pp. 67 ◽  
Author(s):  
Thomson
Keyword(s):  

Stats ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 205-215
Author(s):  
David Trafimow ◽  
Tonghui Wang ◽  
Cong Wang

In a recent article, Trafimow suggested the usefulness of imagining an ideal universe where the only difference between original and replication experiments is the operation of randomness. This contrasts with replication in the real universe where systematicity, as well as randomness, creates differences between original and replication experiments. Although Trafimow showed (a) that the probability of replication in the ideal universe places an upper bound on the probability of replication in the real universe, and (b) how to calculate the probability of replication in the ideal universe, the conception is afflicted with an important practical problem. Too many participants are needed to render the approach palatable to most researchers. The present aim is to address this problem. Embracing skewness is an important part of the solution.


2020 ◽  
Vol 27 (2) ◽  
pp. 265-269
Author(s):  
Alexander Kharazishvili

AbstractIt is shown that any function acting from the real line {\mathbb{R}} into itself can be expressed as a pointwise limit of finite sums of periodic functions. At the same time, the real analytic function {x\rightarrow\exp(x^{2})} cannot be represented as a uniform limit of finite sums of periodic functions and, simultaneously, this function is a locally uniform limit of finite sums of periodic functions. The latter fact needs the techniques of Hamel bases.


Sign in / Sign up

Export Citation Format

Share Document