A non-invasive technique for estimating carpal tunnel pressure by measuring shear wave speed in tendon: A feasibility study

2012 ◽  
Vol 45 (16) ◽  
pp. 2927-2930 ◽  
Author(s):  
Yuexiang Wang ◽  
Bo Qiang ◽  
Xiaoming Zhang ◽  
James F. Greenleaf ◽  
Kai-Nan An ◽  
...  
Ultrasonics ◽  
2020 ◽  
Vol 107 ◽  
pp. 106170
Author(s):  
Xiaoming Zhang ◽  
Alex X. Zhang ◽  
Boran Zhou ◽  
Xiaolei Xu

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marian Amber Troelstra ◽  
Jurgen Henk Runge ◽  
Emma Burnhope ◽  
Alessandro Polcaro ◽  
Christian Guenthner ◽  
...  

AbstractChanges in myocardial stiffness may represent a valuable biomarker for early tissue injury or adverse remodeling. In this study, we developed and validated a novel transducer-free magnetic resonance elastography (MRE) approach for quantifying myocardial biomechanics using aortic valve closure-induced shear waves. Using motion-sensitized two-dimensional pencil beams, septal shear waves were imaged at high temporal resolution. Shear wave speed was measured using time-of-flight of waves travelling between two pencil beams and corrected for geometrical biases. After validation in phantoms, results from twelve healthy volunteers and five cardiac patients (two left ventricular hypertrophy, two myocardial infarcts, and one without confirmed pathology) were obtained. Torsional shear wave speed in the phantom was 3.0 ± 0.1 m/s, corresponding with reference speeds of 2.8 ± 0.1 m/s. Geometrically-biased flexural shear wave speed was 1.9 ± 0.1 m/s, corresponding with simulation values of 2.0 m/s. Corrected septal shear wave speeds were significantly higher in patients than healthy volunteers [14.1 (11.0–15.8) m/s versus 3.6 (2.7–4.3) m/s, p = 0.001]. The interobserver 95%-limits-of-agreement in healthy volunteers were ± 1.3 m/s and interstudy 95%-limits-of-agreement − 0.7 to 1.2 m/s. In conclusion, myocardial shear wave speed can be measured using aortic valve closure-induced shear waves, with cardiac patients showing significantly higher shear wave speeds than healthy volunteers. This non-invasive measure may provide valuable insights into the pathophysiology of heart failure.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
S Bezy ◽  
A Caenen ◽  
J Duchenne ◽  
M Orlowska ◽  
M Amoni ◽  
...  

Abstract Background Several cardiovascular disorders are accompanied by a stiffening of the myocardium and may result in diastolic heart failure. The non-invasive assessment of myocardial stiffness could therefore improve the understanding of the pathophysiology and guide treatment. Shear wave elastography (SWE) is a recent technique with tremendous potential for evaluating myocardial stiffness in a non-invasive way. Using high frame rate echocardiography, the propagation speed of shear waves is evaluated, which is directly related to the stiffness of the myocardium. These waves are induced by for instance mitral valve closure (MVC) and propagate throughout the cardiac muscle. However, validation of SWE against an invasive gold standard method is lacking. Purpose The aim of this study was to compare echocardiographic shear wave elastography against invasive pressure-volume loops, a gold standard reference method for assessing chamber stiffness. Methods In 15 pigs (31.2±4.1 kg) stiffness of the myocardium was acutely changed by inducing ischemia/reperfusion (I/R) injury. For this, the proximal LAD was balloon occluded for 90 minutes with subsequent reperfusion for 40 minutes. Conventional and high frame rate echocardiographic images were acquired simultaneously with pressure-volume loops during baseline conditions and after the induction of the I/R injury. Preload was reduced in order to acquire a set of pressure-volume loops to derive the end-diastolic pressure volume relation (EDPVR). From the EDPVR, the stiffness coefficient β and the operating chamber stiffness dP/dV were obtained. High frame rate echocardiographic datasets of the parasternal long axis view were acquired with an experimental ultrasound scanner (HD-PULSE) at an average frame rate of 1304±115 Hz. Tissue acceleration maps were obtained by drawing an M-mode line along the interventricular septum in order to visualize shear waves after MVC (at end-diastole). The propagation speed was assessed by semi-automatically measuring the slope (Figure A). Results I/R injury led to an elevated chamber stiffness constant β (0.09±0.03 1/ml vs. 0.05±0.01 1/ml; p<0.001) and operating chamber stiffness dP/dV (1.09±0.38 mmHg/ml vs. 0.50±0.18 mmHg/ml; p<0.01). Likewise, shear wave speed after MVC increased after the induction of the I/R injury in comparison to baseline (6.1±1.2 m/s vs. 3.2±0.8 m/s; p<0.001). Shear wave speed had a moderate positive correlation with β (r=0.63; p<0.001) (Figure B) and a strong positive correlation with dP/dV (r=0.81; p<0.001) (Figure C). Conclusion End-diastolic shear wave speed is strongly related to chamber stiffness, assessed invasively by pressure-volume loops. These results indicate that shear wave propagation speed could be used as a novel non-invasive measurement of the mechanical properties of the ventricle. FUNDunding Acknowledgement Type of funding sources: Public grant(s) – National budget only. Main funding source(s): FWO - Research Foundation Flanders


2015 ◽  
Vol 46 (1) ◽  
pp. 93-98 ◽  
Author(s):  
L. C. Carlson ◽  
S. T. Romero ◽  
M. L. Palmeri ◽  
A. Muñoz del Rio ◽  
S. M. Esplin ◽  
...  

2014 ◽  
Vol 47 (11) ◽  
pp. 2685-2692 ◽  
Author(s):  
Ryan J. DeWall ◽  
Laura C. Slane ◽  
Kenneth S. Lee ◽  
Darryl G. Thelen

2003 ◽  
Vol 81 (1-2) ◽  
pp. 47-53 ◽  
Author(s):  
M B Helgerud ◽  
W F Waite ◽  
S H Kirby ◽  
A Nur

We report on compressional- and shear-wave-speed measurements made on compacted polycrystalline sI methane and sII methane–ethane hydrate. The gas hydrate samples are synthesized directly in the measurement apparatus by warming granulated ice to 17°C in the presence of a clathrate-forming gas at high pressure (methane for sI, 90.2% methane, 9.8% ethane for sII). Porosity is eliminated after hydrate synthesis by compacting the sample in the synthesis pressure vessel between a hydraulic ram and a fixed end-plug, both containing shear-wave transducers. Wave-speed measurements are made between –20 and 15°C and 0 to 105 MPa applied piston pressure. PACS No.: 61.60Lj


Choonpa Igaku ◽  
2021 ◽  
Author(s):  
Hiroko IIJIMA ◽  
Toshifumi TADA ◽  
Hiroyuki HACHIYA ◽  
Takashi NISHIMURA ◽  
Junko NISHIMURA ◽  
...  

2021 ◽  
Vol 75 (2) ◽  
pp. 125-133
Author(s):  
Soňa Franková ◽  
Jan Šperl

Portal hypertension represents a wide spectrum of complications of chronic liver diseases and may present by ascites, oesophageal varices, splenomegaly, hypersplenism, hepatorenal and hepatopulmonary syndrome or portopulmonary hypertension. Portal hypertension and its severity predicts the patient‘s prognosis: as an invasive technique, the portosystemic gradient (HPVG – hepatic venous pressure gradient) measurement by hepatic veins catheterisation has remained the gold standard of its assessment. A reliable, non-invasive method to assess the severity of portal hypertension is of paramount importance; the patients with clinically significant portal hypertension have a high risk of variceal bleeding and higher mortality. Recently, non-invasive methods enabling the assessment of liver stiffness have been introduced into clinical practice in hepatology. Not only may these methods substitute for liver biopsy, but they may also be used to assess the degree of liver fibrosis and predict the severity of portal hypertension. Nowadays, we can use the quantitative elastography (transient elastography, point shear-wave elastrography, 2D-shear-wave elastography) or magnetic resonance imaging. We may also assess the severity of portal hypertension based on the non-invasive markers of liver fibrosis (i.e. ELF test) or estimate clinically signifi cant portal hypertension using composite scores (LSPS – liver spleen stiff ness score), based on liver stiffness value, spleen diameter and platelet count. Spleen stiffness measurement is a new method that needs further prospective studies. The review describes current possibilities of the non-invasive assessment of portal hypertension and its severity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohammed Hazem ◽  
Ossama M. Zakaria ◽  
Mohamed Yasser Ibrahim Daoud ◽  
Ibrahim Khalid Al Jabr ◽  
Abdulwahab A. AlYahya ◽  
...  

Abstract Background Thyroid nodules are an important health problem in children and adolescents. They possess a higher risk of malignancy in comparison to adults. This fact forms a great dilemma for clinicians. The aim of this study was to evaluate the reliability of shear wave elastography (SWE) as a non-invasive technique in the characterization of thyroid nodules in children and adolescents. Methods This prospective study included 56 patients with thyroid nodules. All the patients underwent clinical assessment, laboratory investigations, ultrasound, and Doppler examination, followed by an SWE assessment. Statistical analysis was performed and the best cut-off value to differentiate benign from malignant nodules was determined using the ROC curve and AUC. Results Seventy-two nodules were detected in the examined patients (ages ranged from 11 to 19 years, with mean age of 14.89 ± 2.3 years). Fifty-eight nodules (80.6%) were benign, and fourteen nodules (19.4%) were malignant (histopathologically proved). Highly suspicious criteria for prediction of malignancy by ultrasound and Doppler were hypoechoic echopattern, internal or internal and peripheral vascularity, microcalcifications, taller-than-wide dimensions, irregular outlines, and absence of halo (p < 0.05). The diagnostic performance for their summation was 70.69% sensitivity, 82.8% specificity, 80.45% accuracy, a 63.79% positive predictive value (PPV), and 87.9% negative predictive values (NPV). Regarding SWE, our results showed that 42.2 kPa was the best cut-off value, with AUC = 0.921 to differentiate malignant from benign nodules; the diagnostic performance was 85.71% sensitivity, 94.83% specificity, 93.06% accuracy, 76.9% PPV, and 93.2% NPV. Conclusion Shear wave elastography is a non-invasive technique that can assist in the diagnosis of malignant thyroid nodules among children and adolescents.


Sign in / Sign up

Export Citation Format

Share Document