The role of alchohol dehydrogenase isozymes in multiple deletion mutants of Saccharomyces cerevisiae

2007 ◽  
Vol 131 (2) ◽  
pp. S214 ◽  
Author(s):  
James du Preez ◽  
Olga de Smidt ◽  
Koos Albertyn
2002 ◽  
Vol 22 (15) ◽  
pp. 5367-5379 ◽  
Author(s):  
Pei-Yun Jenny Wu ◽  
Fred Winston

ABSTRACT The Saccharomyces cerevisiae SAGA complex is required for the normal transcription of a large number of genes. Complex integrity depends on three core subunits, Spt7, Spt20, and Ada1. We have investigated the role of Spt7 in the assembly and function of SAGA. Our results show that Spt7 is important in controlling the levels of the other core subunits and therefore of SAGA. In addition, partial SAGA complexes containing Spt7 can be assembled in the absence of both Spt20 and Ada1. Through biochemical and genetic analyses of a series of spt7 deletion mutants, we have identified a region of Spt7 required for interaction with the SAGA component Spt8. An adjacent Spt7 domain was found to be required for a processed form of Spt7 that is present in a previously identified altered form of SAGA called SLIK, SAGAalt, or SALSA. Analysis of an spt7 mutant with greatly reduced levels of SLIK/SAGAalt/SALSA suggests a subtle role for this complex in transcription that may be redundant with a subset of SAGA functions.


Author(s):  
Linru Huang ◽  
Zhijia Fang ◽  
Jian Gao ◽  
Jingwen Wang ◽  
Yongbin Li ◽  
...  

Genetics ◽  
1999 ◽  
Vol 151 (4) ◽  
pp. 1261-1272 ◽  
Author(s):  
Laura Salem ◽  
Natalie Walter ◽  
Robert Malone

Abstract REC104 is a gene required for the initiation of meiotic recombination in Saccharomyces cerevisiae. To better understand the role of REC104 in meiosis, we used an in vitro mutagenesis technique to create a set of temperature-conditional mutations in REC104 and used one ts allele (rec104-8) in a screen for highcopy suppressors. An increased dosage of the early exchange gene REC102 was found to suppress the conditional recombinational reduction in rec104-8 as well as in several other conditional rec104 alleles. However, no suppression was observed for a null allele of REC104, indicating that the suppression by REC102 is not “bypass” suppression. Overexpression of the early meiotic genes REC114, RAD50, HOP1, and RED1 fails to suppress any of the rec104 conditional alleles, indicating that the suppression might be specific to REC102.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 888
Author(s):  
Xuejiao Jin ◽  
Jie Zhang ◽  
Tingting An ◽  
Huihui Zhao ◽  
Wenhao Fu ◽  
...  

Lithium hexafluorophosphate (LiPF6) is one of the leading electrolytes in lithium-ion batteries, and its usage has increased tremendously in the past few years. Little is known, however, about its potential environmental and biological impacts. In order to improve our understanding of the cytotoxicity of LiPF6 and the specific cellular response mechanisms to it, we performed a genome-wide screen using a yeast (Saccharomyces cerevisiae) deletion mutant collection and identified 75 gene deletion mutants that showed LiPF6 sensitivity. Among these, genes associated with mitochondria showed the most enrichment. We also found that LiPF6 is more toxic to yeast than lithium chloride (LiCl) or sodium hexafluorophosphate (NaPF6). Physiological analysis showed that a high concentration of LiPF6 caused mitochondrial damage, reactive oxygen species (ROS) accumulation, and ATP content changes. Compared with the results of previous genome-wide screening for LiCl-sensitive mutants, we found that oxidative phosphorylation-related mutants were specifically hypersensitive to LiPF6. In these deletion mutants, LiPF6 treatment resulted in higher ROS production and reduced ATP levels, suggesting that oxidative phosphorylation-related genes were important for counteracting LiPF6-induced toxicity. Taken together, our results identified genes specifically involved in LiPF6-modulated toxicity, and demonstrated that oxidative stress and ATP imbalance maybe the driving factors in governing LiPF6-induced toxicity.


2004 ◽  
Vol 26 (23) ◽  
pp. 1781-1785 ◽  
Author(s):  
Kris De Smet ◽  
Rieka Reekmans ◽  
Roland Contreras

Sign in / Sign up

Export Citation Format

Share Document