lithium hexafluorophosphate
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 1)

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 888
Author(s):  
Xuejiao Jin ◽  
Jie Zhang ◽  
Tingting An ◽  
Huihui Zhao ◽  
Wenhao Fu ◽  
...  

Lithium hexafluorophosphate (LiPF6) is one of the leading electrolytes in lithium-ion batteries, and its usage has increased tremendously in the past few years. Little is known, however, about its potential environmental and biological impacts. In order to improve our understanding of the cytotoxicity of LiPF6 and the specific cellular response mechanisms to it, we performed a genome-wide screen using a yeast (Saccharomyces cerevisiae) deletion mutant collection and identified 75 gene deletion mutants that showed LiPF6 sensitivity. Among these, genes associated with mitochondria showed the most enrichment. We also found that LiPF6 is more toxic to yeast than lithium chloride (LiCl) or sodium hexafluorophosphate (NaPF6). Physiological analysis showed that a high concentration of LiPF6 caused mitochondrial damage, reactive oxygen species (ROS) accumulation, and ATP content changes. Compared with the results of previous genome-wide screening for LiCl-sensitive mutants, we found that oxidative phosphorylation-related mutants were specifically hypersensitive to LiPF6. In these deletion mutants, LiPF6 treatment resulted in higher ROS production and reduced ATP levels, suggesting that oxidative phosphorylation-related genes were important for counteracting LiPF6-induced toxicity. Taken together, our results identified genes specifically involved in LiPF6-modulated toxicity, and demonstrated that oxidative stress and ATP imbalance maybe the driving factors in governing LiPF6-induced toxicity.


2020 ◽  
Vol 12 (29) ◽  
pp. 32771-32777
Author(s):  
Along Zhao ◽  
Faping Zhong ◽  
Xiangming Feng ◽  
Weihua Chen ◽  
Xinping Ai ◽  
...  

2020 ◽  
Vol 38 (11) ◽  
pp. 1295-1300
Author(s):  
Yanbin Zhu ◽  
Qing Ding ◽  
Yuming Zhao ◽  
Jinwen Ai ◽  
Yan Li ◽  
...  

Residual electrolyte is the main pollution source in the lithium ion battery disassembly process. A practical detoxified approach is studied using the lithium hexafluorophosphate in the decommissioned power battery with dimethyl carbonate as a solvent. The pH measurement, Fourier transform infrared spectroscopy, micromorphology and phase structure characterization techniques showed that the process in this study is capable of removing lithium hexafluorophosphate from decommissioned power batteries, while controlling the proper ratio of NaOH can also completely precipitate F− into CaF2 crystal and allows recycling of the organic solvents. This process scheme of residual electrolyte treatment effectively reduces environmental pollution during the decommissioned power batteries recycling process, and has the benefit of resource reuse for valuable elements.


Sign in / Sign up

Export Citation Format

Share Document