Fabrication of a solution-gated transistor based on valinomycin modified iron oxide nanoparticles decorated zinc oxide nanorods for potassium detection

2018 ◽  
Vol 518 ◽  
pp. 277-283 ◽  
Author(s):  
Min-Sang Ahn ◽  
Rafiq Ahmad ◽  
Kiesar Sideeq Bhat ◽  
Jin-Young Yoo ◽  
Tahmineh Mahmoudi ◽  
...  
2018 ◽  
Vol 6 (39) ◽  
pp. 10502-10512 ◽  
Author(s):  
Brandon Azeredo ◽  
Anne Carton ◽  
Cédric Leuvrey ◽  
Céline Kiefer ◽  
Dris Ihawakrim ◽  
...  

A ZnO/PBA/Fe3−δO4 nanocomposite displays enhanced magnetic and optical properties as a result of dual synergy.


2021 ◽  
Vol 11 (1) ◽  
pp. 176-190
Author(s):  
Lijo P. Mona ◽  
Sandile P. Songca ◽  
Peter A. Ajibade

Abstract The synthesis, characterization, and applications of iron oxide nanorods have received attention in recent years. Even though there are several studies on the biological applications of iron oxide nanoparticles, recent studies have shown that rod-shaped iron oxides are effective in magnetic hyperthermia (MHT) as therapeutic technique to treat cancer. This review focused on the synthesis and encapsulation of magnetic iron oxide nanorods (MIONRs) and their use in (MHT) and photothermal therapy (PTT) for cancer cells. Among the synthetic methods that have been used to prepare MIONRs, some could be used to precisely control the particle size of the as-prepared magnetic iron oxide nanoparticles (MIONs), while others could be used to prepare monodisperse particles with uniform size distributions. Some of the results presented in this review showed that magnetic oxide nanorods are more potent in MHT than polyhedral-shaped MIONs. The review shows that mixtures of polyhedral- and rod-shaped MIONs resulted in 59 and 77% cell death, while monodisperse MIONRs resulted in 95% cell death. It could thus be concluded that, for magnetic iron oxide to be effective in MHT and PTT, it is important to prepare monodisperse magnetic oxide nanorods.


2017 ◽  
Vol 7 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Ruhollah Dorostkar ◽  
Majdedin Ghalavand ◽  
Ali Nazarizadeh ◽  
Mahdi Tat ◽  
Mohammad Sadegh Hashemzadeh

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Sorna Prema Rajendran ◽  
Kandasamy Sengodan

The objectives of this present study are to synthesize iron oxide and zinc oxide nanoparticles from different concentrations of Sesbania grandiflora leaf extract (5–20%) using zinc nitrate and ferrous chloride as precursor materials and synthesized nanoparticles were characterized using UV-visible spectrometer, FTIR, X-ray diffraction, and SEM. The results showed that synthesized zinc oxide and iron oxide nanoparticles exhibited UV-visible absorption peaks at 235 nm and 220 nm, respectively, which indicated that both nanoparticles were photosensitive and the XRD study confirmed that both nanoparticles were crystalline in nature. In addition, FTIR was also used to analyze the various functional groups present in the synthesized nanoparticles. The SEM results reveal that zinc oxide nanoparticles were spherical in shape and having the particle size range of 15 to 35 nm whereas the iron oxide nanoparticles were nonspherical in shape with the size range of 25 to 60 nm. Application of synthesized nanoparticle on seafood effluent treatment was studied.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


Sign in / Sign up

Export Citation Format

Share Document