Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors

2021 ◽  
Vol 585 ◽  
pp. 420-432
Author(s):  
Xiaoyong Zhang ◽  
Jingsi Chen ◽  
Jinmei He ◽  
Yongping Bai ◽  
Hongbo Zeng
Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2239
Author(s):  
Nicholas Rodriguez ◽  
Samantha Ruelas ◽  
Jean-Baptiste Forien ◽  
Nikola Dudukovic ◽  
Josh DeOtte ◽  
...  

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput. However, all high-performance silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein, the design and build of a digital light projection SLA printer suitable for handling high-viscosity resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone elastomers are shown to have tunable mechanical properties, with 100–350% elongation and ultimate tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and complexity is demonstrated by octet-truss lattices that display negative stiffness.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1469 ◽  
Author(s):  
Orathai Tangsirinaruenart ◽  
George Stylios

This research presents an investigation of novel textile-based strain sensors and evaluates their performance. The electrical resistance and mechanical properties of seven different textile sensors were measured. The sensors are made up of a conductive thread, composed of silver plated nylon 117/17 2-ply, 33 tex and 234/34 4-ply, 92 tex and formed in different stitch structures (304, 406, 506, 605), and sewn directly onto a knit fabric substrate (4.44 tex/2 ply, with 2.22, 4.44 and 7.78 tex spandex and 7.78 tex/2 ply, with 2.22 and 4.44 tex spandex). Analysis of the effects of elongation with respect to resistance indicated the ideal configuration for electrical properties, especially electrical sensitivity and repeatability. The optimum linear working range of the sensor with minimal hysteresis was found, and the sensor’s gauge factor indicated that the sensitivity of the sensor varied significantly with repeating cycles. The electrical resistance of the various stitch structures changed significantly, while the amount of drift remained negligible. Stitch 304 2-ply was found to be the most suitable for strain movement. This sensor has a wide working range, well past 50%, and linearity (R2 is 0.984), low hysteresis (6.25% ΔR), good gauge factor (1.61), and baseline resistance (125 Ω), as well as good repeatability (drift in R2 is −0.0073). The stitch-based sensor developed in this research is expected to find applications in garments as wearables for physiological wellbeing monitoring such as body movement, heart monitoring, and limb articulation measurement.


2019 ◽  
Vol 84 ◽  
pp. 453-467 ◽  
Author(s):  
Min-Ho Kang ◽  
Hyun Lee ◽  
Tae-Sik Jang ◽  
Yun-Jeong Seong ◽  
Hyoun-Ee Kim ◽  
...  

2019 ◽  
Vol 11 (44) ◽  
pp. 41659-41667 ◽  
Author(s):  
Jinrong Wang ◽  
Zhuo Chen ◽  
Xueyan Li ◽  
Mingjie Liu ◽  
Ying Zhu ◽  
...  

2018 ◽  
Vol 53 (20) ◽  
pp. 14274-14286 ◽  
Author(s):  
Luquan Ren ◽  
Xueli Zhou ◽  
Qingping Liu ◽  
Yunhong Liang ◽  
Zhengyi Song ◽  
...  

2021 ◽  
Vol 875 ◽  
pp. 96-103
Author(s):  
Ayesha Afzal ◽  
Iqra Abdul Rashid ◽  
H.M. Faizan Shakir ◽  
Asra Tariq

Conducting polymer blends Polyaniline-Dodecylbenzene sulfonic acid (Pani.DBSA) and thermoplastic polyurethane (TPU) were prepared using in-situ emulsion polymerization method by dissolving both components in DMF. Ani.DBSA/TPU blends were prepared with different compositions 20/80, 30/70, 40/60 and 50/50 wt%. Theses blends have good conducting and mechanical properties. Blends were characterized by Potentiostate, Thermogravimetric analysis (TGA), Infrared spectroscopy (FTIR) and Dynamic mechanical thermal analyzer (DMTA). The electrical conductivity increases up to 30 wt% loading of aniline.DBSA after that it decreases gradually. The uniform dispersion of aniline.DBSA showed in SEM images which is the indication of a strong connection between aniline.DBSA and TPU which increase the conductivity. These blends can be used as strain sensors.


2022 ◽  
pp. 2102306
Author(s):  
Guoqing Lin ◽  
Muqing Si ◽  
Longgang Wang ◽  
Shuxin Wei ◽  
Wei Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document