Grinding performance of bearing steel using MQL under different dilutions and wheel cleaning for green manufacture

2020 ◽  
Vol 257 ◽  
pp. 120376 ◽  
Author(s):  
Mateus Vinicius Garcia ◽  
José Claudio Lopes ◽  
Anselmo Eduardo Diniz ◽  
Alessandro Roger Rodrigues ◽  
Roberta Silveira Volpato ◽  
...  
2017 ◽  
Vol 31 (2) ◽  
pp. 17 ◽  
Author(s):  
Sirsendu Mahata ◽  
Ankesh Samanta ◽  
Joydip Roy ◽  
Bijoy Mandal ◽  
Santanu Das

2014 ◽  
Vol 69 (6) ◽  
pp. 368-376 ◽  
Author(s):  
A. Schulz ◽  
W. Trojahn ◽  
C. Meyer ◽  
V. Uhlenwinkel

Author(s):  
O. B. Berdnik ◽  
I. N. Tsareva ◽  
L. A. Krivina ◽  
S. V. Kirikov ◽  
S. I. Gerasimov ◽  
...  

When conducting impact tests of protective glasses, nonunique cases of destruction of balls made of bearing steel ShKh15 were recorded. The causes of their destruction were determined. The state of the material was studied by fractographic and metallographic analysis, hardness and microhardness measurement. In the structure of the metal of all the balls, no critical defects were found such as flockens, shells and microcracks, but adverse factors were detected in the microstructure of the material, namely, the presence of fineneedle martensite with excessive carbides. It is established that the detected structural factors lead to liability to brittle fracture, an increase in the hardness of the material, a decrease in plasticity. To prevent brittle fracture of the balls and provide a reserve of plasticity of steel ShKh15 at high shock loads assessment calculations of ductility coefficient were made; and it was recommended to limit the maximum hardness of the material critical value HV=5.70 HPa (54 HRC), with the corresponding plasticity coefficient equal to 0.8.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Zhiwei Wu ◽  
Maosheng Yang ◽  
Kunyu Zhao

The new generation of bearing steel has good comprehensive properties, which can satisfy most of the requirements of bearing steel in a complex environment. In the presented work, fatigue properties of 15Cr14Co12Mo5Ni2 bearing steel have been investigated by means of rotating bending fatigue tests on smooth bar specimens after carburization and heat treatment. Optical microscope, scanning electron microscopy, electron backscatter diffraction, and Image-Pro Plus software were used to analyze the fracture, microstructure, and carbides. The results suggest that the fatigue strength at room temperature and 500 °C is 1027 MPa and 585 MPa, respectively. Scanning electron micrographic observations on the fracture surface of the fatigue specimens at 500 °C show that fatigue cracks usually initiate from voids in the carburized case and oxide layer on the surface of steel. The failure mode in the carburized case is a quasi-cleavage fracture, and with the increase of crack propagation depth, the failure mode gradually changes to fatigue and creep-fatigue interaction. With the increase of the distance from the surface, the size of the martensite block decreases and the fracture surface shows great fluctuation.


Sign in / Sign up

Export Citation Format

Share Document