scholarly journals District heating driven membrane distillation for advanced flue gas condensate treatment in combined heat and power plants

2021 ◽  
Vol 292 ◽  
pp. 125979
Author(s):  
Imtisal-e− Noor ◽  
Andrew Martin ◽  
Olli Dahl
2019 ◽  
Vol 237 ◽  
pp. 196-209 ◽  
Author(s):  
Jiawei Wang ◽  
Shi You ◽  
Yi Zong ◽  
Hanmin Cai ◽  
Chresten Træholt ◽  
...  

2000 ◽  
Author(s):  
Jeppe Grue ◽  
Jens Andersen ◽  
Niels From ◽  
Inger Bach

Abstract In Denmark power generation is extensively based on small combined heat and power plants, which produce electric power and district heating. This work will focus on the small plants around 1 MW in size, which are often unmanned and operating completely automatically. The objective of this work is to formulate a method which can be used to determine the optimal operating strategy for a CHP plant, and that this strategy must be fully automated. The contribution margin of the plant is used as the objective function for the optimization. Finally the method is tested on a small CHP plant, which is a gas engine producing 1.34 MW electrical power and 1.6 MJ/s district heating. The methods, which are developed, can be used in general for the evaluation and optimization of automated strategies for the operation of small-unmanned CHP plants. The strong feature of the method is that it sets an ultimate target that is the best possible one to obtain with a view to any strategy. This provides a basis for the evaluation and optimization of the actual strategy.


2021 ◽  
Vol 13 (8) ◽  
pp. 4527
Author(s):  
Daniele Fiaschi ◽  
Giampaolo Manfrida ◽  
Barbara Mendecka ◽  
Lorenzo Tosti ◽  
Maria Laura Parisi

In this paper, we assess using two alternative allocation schemes, namely exergy and primary energy saving (PES) to compare products generated in different combined heat and power (CHP) geothermal systems. In particular, the adequacy and feasibility of the schemes recommended for allocation are demonstrated by their application to three relevant and significantly different case studies of geothermal CHPs, i.e., (1) Chiusdino in Italy, (2) Altheim in Austria, and (3) Hellisheidi in Iceland. The results showed that, given the generally low temperature level of the cogenerated heat (80–100 °C, usually exploited in district heating), the use of exergy allocation largely marginalizes the importance of the heat byproduct, thus, becoming almost equivalent to electricity for the Chiusdino and Hellisheidi power plants. Therefore, the PES scheme is found to be the more appropriate allocation scheme. Additionally, the exergy scheme is mandatory for allocating power plants’ environmental impacts at a component level in CHP systems. The main drawback of the PES scheme is its country dependency due to the different fuels used, but reasonable and representative values can be achieved based on average EU heat and power generation efficiencies.


2018 ◽  
Vol 11 (3) ◽  
pp. 184-191
Author(s):  
V. I. Sharapov ◽  
M. E. Orlov ◽  
M. M. Zamaleev ◽  
P. E. Chaukin

The factors determining the need for modernization of urban district heating systems with combined heat and power are considered. It is noted that these factors include a significant reduction in thermal loads, new technical and technological opportunities for improving district heating systems, the change in legislation in the field of energy and heat supplying. It is shown that the main disadvantage of the current state of Russian cogeneration systems is a decrease in the combined production of heat and power, leading to a decrease in the efficiency of fuel use, due to unreasonably extensive use of autonomous heat supply sources in many regions. Besides, combined heat and power plants (CHPP) experience a lack of a level playing field in competition with other power plants in the electricity market, with a technically and economically unjustified ban imposed on open heat supply systems. For effective use of the benefits of cogeneration and district heating, the following top priority measures are recommended. It is required to legislate the economic benefits for the combined production of electricity and heat. It is necessary to adjust the model of the wholesale electric energy and power market to eliminate discrimination of CHPP in this market. The construction of autonomous heat sources in urban areas with CHPPs is to be prohibited unless substantiated with an adequate feasibility study. Decommissioning of CHPPs and heat sources, which are used to back up CHPPs, must only be permitted subject to a mandatory feasibility study, including assessment of effects on reliability of heat supply of urban consumers. The Russian Federal Law “On heat supply” is to be adjusted to lift the total ban on the use of open heat supply systems. It is required to create a national body with sufficient authority to control and coordinate the activities of energy companies to modernize cogeneration and district heating systems.


Author(s):  
F. Caresana ◽  
G. Comodi ◽  
L. Pelagalli ◽  
D. Salvi

We describe the running plan of a 5.5-MWe-STIG-plant. Located in a medium-sized town in the centre of Italy, the plant both produces electric power and partially satisfies the thermal load of a nearby city district. An account of the Italian energy market is provided and the impact of recent legislation on plant operation is analysed. The liberalization of the Italian energy market in 1999 has significantly affected the technical and economic scenario for both existing and future power plants. As an example, we analyse the effects of liberalization on the overall performances of the plant described herein as well as the main changes in its running-strategies. A better economic result is shown to be possible in the new scenario mainly thanks to plant flexibility when operating as CHP (Combined Heat and Power) unit. The pursuit of optimum economic performance however prevents the plant from working at its best energetic efficiency.


2020 ◽  
pp. 14-24
Author(s):  
Tina Lidberg ◽  
Thomas Olofsson ◽  
Louise Ödlund

Lowering temperature levels of a district heating (DH) system may offer several advantages such as reduced distribution losses, increased efficiency of flue gas condensation equipment and increased electricity generation in combined heat and power plants. In a broader perspective this can result in more efficient use of natural resources as well as reduced climate-impacting emissions. This study examines how decreased DH supply temperatures influence the power-to-heat ratio and thereby electricity production and fuel use in a combined heat and power plant. Carbon dioxide equivalent (CO2-eqv.) emissions and primary energy use were calculated with three different marginal electricity perspectives. A regional DH system situated in mid-Sweden was used as a case study and the energy system cost optimization modelling tool MODEST (Model for Optimization of Dynamic Energy Systems with Time-Dependent Components and Boundary Conditions) was used. The results show that decreasing the DH supply temperature results in increased electricity production as well as increased fuel use within the system. Further, there is a significant difference in CO2-eqv. emissions and primary energy use for the studied marginal electricity perspectives.


Sign in / Sign up

Export Citation Format

Share Document