Evaluation of agricultural water-saving effects in the context of water rights trading: An empirical study from China's water rights pilots

2021 ◽  
pp. 127725
Author(s):  
Hengquan Zhang ◽  
Qin Zhou ◽  
Chenjun Zhang
Author(s):  
Mohammad Abdul Kader ◽  
Ashutus Singha ◽  
Mili Amena Begum ◽  
Arif Jewel ◽  
Ferdous Hossain Khan ◽  
...  

Abstract Agricultural water resources have been limited over the years due to global warming and irregular rainfall in the arid and semi-arid regions. To mitigate the water stress in agriculture, mulching has a crucial impact as a water-saving technique in rain-fed crop cultivation. It is important mainly for preserving soil moisture, relegating soil temperature, and limiting soil evaporation, which affects the crop yield. Mulching has many strategic effects on soil ecosystem, crop growth, and climate. Mulch insulates the soil, helping to provide a buffer from cold and hot temperatures that have a crucial activity in creating beautiful and protected landscapes. This study has accumulated a series of information about both organic and plastic mulch materials and its applicability on crop cultivation. Moreover, future research potentials of mulching with modeling were discussed to quantify water loss in agriculture.


2021 ◽  
Vol 35 (3) ◽  
pp. 775-792
Author(s):  
Cuimei Lv ◽  
Huiqin Li ◽  
Minhua Ling ◽  
Xi Guo ◽  
Zening Wu ◽  
...  

2016 ◽  
Vol 74 (5) ◽  
pp. 1106-1115 ◽  
Author(s):  
L. Mu ◽  
L. Fang ◽  
H. Wang ◽  
L. Chen ◽  
Y. Yang ◽  
...  

Worldwide, water scarcity threatens delivery of water to urban centers. Increasing water use efficiency (WUE) is often recommended to reduce water demand, especially in water-scarce areas. In this paper, agricultural water use efficiency (AWUE) is examined using the super-efficient data envelopment analysis (DEA) approach in Xi'an in Northwest China at a temporal and spatial level. The grey systems analysis technique was then adopted to identify the factors that influenced the efficiency differentials under the shortage of water resources. From the perspective of temporal scales, the AWUE increased year by year during 2004–2012, and the highest (2.05) was obtained in 2009. Additionally, the AWUE was the best in the urban area at the spatial scale. Moreover, the key influencing factors of the AWUE are the financial situations and agricultural water-saving technology. Finally, we identified several knowledge gaps and proposed water-saving strategies for increasing AWUE and reducing its water demand by: (1) improving irrigation practices (timing and amounts) based on compatible water-saving techniques; (2) maximizing regional WUE by managing water resources and allocation at regional scales as well as enhancing coordination among Chinese water governance institutes.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 577 ◽  
Author(s):  
Lizhen Wang ◽  
Yong Zhao ◽  
Yuefei Huang ◽  
Jianhua Wang ◽  
Haihong Li ◽  
...  

Water-rights trade has proved to be an effective method for coping with water shortages through the transfer of water resources between users. The water allocation system is classified into two categories based on information transparency and water rights transaction goals: administered system (AS) and market-based system (MS). A multi-agent and multi-objective optimal allocation model, built on a complex adaptive system, was introduced to direct the distribution of water resources under an AS in the Shiyang River Basin; it was compared with a market-based water rights transaction model using the bulletin-board approach. Ideal economic agent equations played a dominant role in both models. The government and different water users were conceptualized as agents with different behaviors and goals in water allocation. The impact of water-saving cost on optimal water allocation was also considered. The results showed that an agent’s water-saving behavior was incentivized by high transaction prices in the water market. Under the MS, the highest bid in the quotation set had a dominant influence on how trade was conducted. A higher transaction price will, thus, result in a better benefit ratio, and a lower one will result in inactivity in terms of water rights trade. This will significantly impact the economic benefit to the basin.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1176 ◽  
Author(s):  
Chuanjuan Wang ◽  
Shaoli Wang ◽  
Haorui Chen ◽  
Jiandong Wang ◽  
Yuan Tao ◽  
...  

In China, the stress on agricultural water resources is becoming increasingly severe. In response, a range of water-saving irrigation (WSI) policies and practices have been promoted to improve irrigation efficiency. In this study, a water-balance model in paddy fields was calibrated and validated using a 2-year field experimental dataset collected from an irrigated area in Gaoyou, China, in 2014–2015. The model was used to assess the effects of WSI practices and provides options for implementing water-price reforms. Results show that paddy fields effectively retain rainfall with utilization rates greater than 70% for both shallow wet irrigation (SWI) and shallow humidity-regulated irrigation (SHRI) scenarios. The estimated average water-saving rates from 1960 to 2015 using SWI and SHRI are 33.7% and 43%, respectively, which represent considerable reductions in water consumption. The benefits of WSI practices combined with water management policies are also evident. For example, conversion of irrigation water to industrial water yields a 3-year average water fee of 205.2 yuan/ha using SWI and 20.6 yuan/ha using SHRI, considerably reducing farmers’ financial burden for agricultural water supplies. In conclusion, we recommend the adoption of SWI and SHRI practices in southern China as a means of partially alleviating China’s water-shortage problem.


2021 ◽  
Author(s):  
Xinjian Guan ◽  
Qiongying Du ◽  
Wenge Zhang ◽  
Baoyong Wang

Abstract Establishing and perfecting the water rights system is an important way to alleviate the shortage of water resources and realize the optimal allocation of water resources. Agriculture is an important user of water in various water-consumption industries, the confirmation of water rights in irrigation districts to farmers is the inevitable requirement for implementing fine irrigation in agricultural production. In this paper, a double-level water rights allocation model of national canals – farmer households in irrigation district is established. It takes into account the current water consumption of the canal system, the future water-saving potential and the constraint of total amount control at the canal level. It takes into account the asymmetric information of farmer households’ population and irrigation area at the farmer household level. Furthermore, the Gini coefficient method is used to construct the water rights allocation model among farmer households based on the principle of fairness. Finally, Wulanbuhe Irrigation Area in the Hetao Irrigation Area of Inner Mongolia is taken as an example. The results show that the allocated water rights of the national canals in the irrigation district are less than the current because of water-saving measures and water rights of farmer household get compensation or cut respectively. The research has fully tapped the water-saving potential of irrigation districts, refined the distribution of water rights of farmers and can provide a scientific basis for the development of water rights allocation in irrigation districts and water rights transactions between farmers.


Sign in / Sign up

Export Citation Format

Share Document