Magnetic iron nanoparticles calcined from biosynthesis for fluoroquinolone antibiotic removal from wastewater

2021 ◽  
Vol 319 ◽  
pp. 128734
Author(s):  
Xiulan Weng ◽  
Wanling Cai ◽  
Gary Owens ◽  
Zuliang Chen
2019 ◽  
Author(s):  
Chem Int

Iron nanoparticles have gained tremendous attention due to their application in magnetic storage media, ferrofluids, biosensors, catalysts, separation processes, environmental remediation and antibacterial activity. In the present paper, iron nanoparticles were synthesized using aqueous flower extract of Piliostigma thonningii, a natural nontoxic herbal infusion. Iron nanoparticles were generated by reaction of ferrous chloride solution with the flower extract. The reductants present in the flower extract acted as reducing and stabilizing agents. UV-vis analysis of the iron nanoparticles showed continuous absorption in the visible range suggesting the iron nanoparticles were amorphous. This was confirmed by X-ray diffraction (XRD) analysis which did not have distinct diffraction peaks. Scanning electron microscopy (SEM) analysis revealed that the synthesized iron nanoparticles were aggregated as irregular clusters with rough surfaces. FT-IR studies showed the functional groups that participated in the bio-reduction process to include a C-H stretch (due to alkane CH3, CH2 or CH), C=O stretch (due to aldehydes), O-H bend (due to tert-alcohol or phenol), C-O stretch (due to aldehydes or phenols) and C-O stretch (due to alcohols) corresponding to absorptions at 2929.00, 1721.53, 1405.19, 1266.31 and 1030.02 cm-1 respectively. The iron nanoparticles showed significant antibacterial activity against Escharichia coli and Staphylococcus aureus suggesting potential antibacterial application.


2015 ◽  
Vol 32 (3) ◽  
pp. 1295-1312
Author(s):  
A. El-Raie ◽  
H. E. Hassan ◽  
A. A. Abd El-Rahman ◽  
A. A. Arafat

2020 ◽  
Vol 16 ◽  
Author(s):  
Asma S. Algebaly ◽  
Afrah E. Mohammed ◽  
Mudawi M. Elobeid

Introduction: Fabrication of iron nanoparticles (FeNPs) has recently gained a great concern for their varied applications in remediation technologies of the environment. Objective: The current study aimed to fabricate iron nanoparticles by green technology approach using different plant sources, Azadirachta indica leaf and Calligonum comosum root following two extraction methods. Methods: Currently, a mixture of FeCl2 and FeCl3 was used to react with the plant extracts which are considered as reducing and stabilizing agents for the generation of FeNPs in one step. Different techniques were used for FeNPs identification. Results: Immediately after mixing of the two reaction components, the color changed to dark brown as an indication of safe conversion of Fe ions to FeNPs, that later confirmed by zeta sizer, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). FeNPs fabricated by C. comosum showed smaller size when compared by those fabricated by A. indica. Using both plant sources, FeNPs fabricated by the aqueous extract had smaller size in relation to those fabricated by ethanolic extract. Furthermore, antibacterial ability against two bacterial strains was approved. Conclusion: The current results indicated that, at room temperature plant extracts fabricated Fe ion to Fe nanoparticles, suggesting its probable usage for large scale production as well as its suitability against bacteria. It could also be recommended for antibiotic resistant bacteria.


Author(s):  
Alazne Galdames ◽  
Leire Ruiz-Rubio ◽  
Maider Orueta ◽  
Miguel Sánchez-Arzalluz ◽  
José Luis Vilas-Vilela

Zero-valent iron has been reported as a successful remediation agent for environmental issues, being extensively used in soil and groundwater remediation. The use of zero-valent nanoparticles have been arisen as a highly effective method due to the high specific surface area of zero-valent nanoparticles. Then, the development of nanosized materials in general, and the improvement of the properties of the nano-iron in particular, has facilitated their application in remediation technologies. As the result, highly efficient and versatile nanomaterials have been obtained. Among the possible nanoparticle systems, the reactivity and availability of zero-valent iron nanoparticles (NZVI) have achieved very interesting and promising results make them particularly attractive for the remediation of subsurface contaminants. In fact, a large number of laboratory and pilot studies have reported the high effectiveness of these NZVI-based technologies for the remediation of groundwater and contaminated soils. Although the results are often based on a limited contaminant target, there is a large gap between the amount of contaminants tested with NZVI at the laboratory level and those remediated at the pilot and field level. In this review, the main zero-valent iron nanoparticles and their remediation capacity are summarized, in addition to the pilot and land scale studies reported until date for each kind of nanomaterials.


Sign in / Sign up

Export Citation Format

Share Document