Phyto-fabrication of Iron Nanoparticles: Characterization and Antibacterial Capacity

2020 ◽  
Vol 16 ◽  
Author(s):  
Asma S. Algebaly ◽  
Afrah E. Mohammed ◽  
Mudawi M. Elobeid

Introduction: Fabrication of iron nanoparticles (FeNPs) has recently gained a great concern for their varied applications in remediation technologies of the environment. Objective: The current study aimed to fabricate iron nanoparticles by green technology approach using different plant sources, Azadirachta indica leaf and Calligonum comosum root following two extraction methods. Methods: Currently, a mixture of FeCl2 and FeCl3 was used to react with the plant extracts which are considered as reducing and stabilizing agents for the generation of FeNPs in one step. Different techniques were used for FeNPs identification. Results: Immediately after mixing of the two reaction components, the color changed to dark brown as an indication of safe conversion of Fe ions to FeNPs, that later confirmed by zeta sizer, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). FeNPs fabricated by C. comosum showed smaller size when compared by those fabricated by A. indica. Using both plant sources, FeNPs fabricated by the aqueous extract had smaller size in relation to those fabricated by ethanolic extract. Furthermore, antibacterial ability against two bacterial strains was approved. Conclusion: The current results indicated that, at room temperature plant extracts fabricated Fe ion to Fe nanoparticles, suggesting its probable usage for large scale production as well as its suitability against bacteria. It could also be recommended for antibiotic resistant bacteria.

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 97
Author(s):  
Suresh V. Chinni ◽  
Subash C. B. Gopinath ◽  
Periasamy Anbu ◽  
Neeraj Kumar Fuloria ◽  
Shivkanya Fuloria ◽  
...  

The present study was planned to characterize and analyze the antimicrobial activity of silver nanoparticles (AgNP) biosynthesized using a Coccinia indica leaf (CIL) ethanolic extract. The present study included the preparation of CIL ethanolic extract using the maceration process, which was further used for AgNP biosynthesis by silver nitrate reduction. Biosynthetic AgNPs were characterized using UV–Visible spectrometry, zeta potential analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and energy-dispersive X-ray (EDX) spectrometry. The biogenic AgNP and CIL extracts were further investigated against different bacterial strains for their antimicrobial activity. The surface plasmon resonance (SPR) signal at 425 nm confirmed AgNP formation. The SEM and TEM data revealed the spherical shape of biogenic AgNPs and size in the range of 8 to 48 nm. The EDX results verified the presence of Ag. The AgNPs displayed a zeta potential of −55.46 mV, suggesting mild AgNP stability. Compared to Gram-positive bacteria, the biogenic AgNPs demonstrated high antibacterial potential against Gram-negative bacteria. Based on the results, the current study concluded that AgNPs based on CIL extract have strong antibacterial potential, and it established that AgNP biosynthesis using CIL ethanol extract is an effective process.


2021 ◽  
Vol 5 (1) ◽  
pp. 020-028
Author(s):  
Fernandes Laura Silva ◽  
da Costa Ygor Ferreira Garcia ◽  
de Bessa Martha Eunice ◽  
Ferreira Adriana Lucia Pires ◽  
do Amaral Corrêa José Otávio ◽  
...  

Morbidity and mortality of the infected patients by multidrug-resistant bacteria have increased, emphasizing the urgency of fight for the discovery of new innovative antibiotics. In this sense, natural products emerge as valuable sources of bioactive compounds. Among the biodiversity, Eryngium pristis Cham. & Schltdl. (Apiaceae Lindl.) is traditionally used to treat thrush and ulcers of throat and mouth, as diuretic and emmenagogue, but scarcely known as an antimicrobial agent. With this context in mind, the goals of this study were to investigate the metabolic profile and the antibacterial activity of ethanolic extract (EE-Ep) and hexane (HF-Ep), dichloromethane (DF-Ep), ethyl acetate (EAF-Ep) and butanol (BF-Ep) fractions from E. pristis leaves. Gas Chromatography-Mass Spectrometry (GC-MS) was performed to stablish the metabolic profile and revealed the presence of 12 and 14 compounds in EAF-Ep and HF-Ep, respectively. β-selinene, spathulenol, globulol, 2-methoxy-4-vinylphenol, α-amyrin, β-amyrin, and lupeol derivative were some of phytochemicals identified. The antibacterial activity was determined by Minimal Inhibitory Concentration (MIC) using the broth micro-dilution against eight ATCC® and five methicillin-resistant Staphylococcus aureus (MRSA) clinical strains. HF-Ep was the most effective (MIC ≤ 5,000 µg/µL), being active against the largest part of tested Gram-positive and Gram-negative bacterial strains, including MRSA, with exception of Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 9027) and (ATCC 27853). These results suggest that E. pristis is a natural source of bioactive compounds for the search of new antibiotics which can be an interesting therapeutic approach to recover patients mainly infected by MRSA strains.


2018 ◽  
Vol 28 (3) ◽  
pp. 72
Author(s):  
Nehia Hussein ◽  
Noor Ameer Hanon

This study was done to evaluate the antibacterial activity of hot ethanolic and aqueous extracts of Syzygium aromatic (S.aromatic ) and Q.infectoria infectoria (gall) against pathogenic bacteria that cause urinary tract infection (UTI). Such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Qualitative detection of the active compounds of the plant extracts was done with chemical reagents. Also, the Qualitative detection of the active groups was further verified with (FTIR). The sensitivity of the UTI causing bacteria was examined against 12 different antibiotics. The results show that E.coli was the most resistant bacteria, resisting 8 from 12 antibiotics; P.aeruginosa resisted 5 from 12 antibiotics; while S.aureus showed resistance to 4 only. The antibacterial activity of the plant extracts was investigated by using four concentrations (40, 60, 80, 100 mg/ml) for each extract against two types of Gram negative bacteria (E.coli, P.aeruginosa), and one type of Gram-positive bacteria (S. aureus). The plant extracts showed different effects on the growth of all bacterial strains. The Minimum Inhibitory Concentration (MIC) and the Minimum bactericidal concentration (MBC) of the ethanolic extracts and aqueous extracts in the study were determined.The kill- time was determined also for each extract.The antioxidant activity of the plants in the study was investigated. Finally, the toxicity of the plant extracts was examined on human red blood cells.


Biosensors ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 6 ◽  
Author(s):  
Amir Ehsan Niaraki Asli ◽  
Jingshuai Guo ◽  
Pei Lun Lai ◽  
Reza Montazami ◽  
Nicole N. Hashemi

Presented here is a scalable and aqueous phase exfoliation of graphite to high yield and quality of few layer graphene (FLG) using Bovine Serum Albomine (BSA) and wet ball milling. The produced graphene ink is tailored for printable and flexible electronics, having shown promising results in terms of electrical conductivity and temporal stability. Shear force generated by steel balls which resulted in 2–3 layer defect-free graphene platelets with an average size of hundreds of nm, and with a concentration of about 5.1 mg/mL characterized by Raman spectroscopy, atomic force microscopy (AFM), transmittance electron microscopy (TEM) and UV-vis spectroscopy. Further, a conductive ink was prepared and printed on flexible substrate (Polyimide) with controlled resolution. Scanning electron microscopy (SEM) and Profilometry revealed the effect of thermal annealing on the prints to concede consistent morphological characteristics. The resulted sheet resistance was measured to be R s = 36.75 Ω / sqr for prints as long as 100 mm. Printable inks were produced in volumes ranging from 20 mL to 1 L, with potential to facilitate large scale production of graphene for applications in biosensors, as well as flexible and printable electronics.


Author(s):  
Jyoti Singh ◽  
Mahesh S. Bhadane ◽  
Vikas Dubey ◽  
Sanjay Daga Dhole ◽  
Jairam Manam ◽  
...  

The chapter provides useful information about synthesis and characterization of dysprosium doped oxide and fluoride-based phosphors such as SrGd2O4, CaSO4, and CaF2. Various techniques (e.g., acid-recrystallization, chemical co-precipitation, and homogenous precipitation cum auto-combustion methods) were adopted to synthesize these phosphors for large-scale production. All the prepared phosphors were characterized by x-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy techniques. The thermoluminescence (TL) studies were performed after different irradiation sources such as gamma rays, thermal neutrons, and low energy ions (H, Ar, and N), respectively. Linear dose responses were observed in a wide range of doses for all the samples. Various trapping parameters, namely order of kinetics, activation energy, and frequency factors, were calculated by using computerized glow curve deconvolution (CGCD) method.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Rouhollah Heydari ◽  
Marzieh Rashidipour

A green synthetic approach by using oak fruit hull (Jaft) extract for preparation of silver nanoparticles (AgNPs) was developed and optimized. Parameters affecting the synthesis of AgNPs, such as temperature, extract pH, and concentration of extract (ratio of plant sample to extraction solvent), were investigated and optimized. Optimum conditions for the synthesis of silver nanoparticles are as follows: Ag+concentration, 1 mM; extract concentration, 40 g/L (4% w/v); pH = 9 and temperature, 45°C. Biosynthesized silver nanoparticles were characterized using UV-visible absorption spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). TEM and DLS analyses have shown the synthesized AgNPs were predominantly spherical in shape with an average size of 40 nm. The cytotoxic activity of the synthesized AgNPs and Jaft extract containing AgNPs against human breast cancer cell (MCF-7) was investigated and the half maximal inhibitory concentrations (IC50) were found to be 50 and 0.04 μg/mL at 24 h incubation, respectively. This eco-friendly and cost-effective synthesis method can be potentially used for large-scale production of silver nanoparticles.


2015 ◽  
Vol 77 (31) ◽  
Author(s):  
Zaharah Ibrahim ◽  
Adibah Yahya ◽  
Azmi Aris ◽  
Ifnu Hakim ◽  
Mohd Ariff Taib ◽  
...  

The continuous growth and demand for our textiles and textile products have resulted in the generation of highly polluted and coloured wastewater emanating from the textile industries. These are detrimental to the environment and pose health threats to the human population if not properly treated. The treatment of colour is a great challenge over the last decades and until now, there is no single and economical treatment process.  As effective treatment plant is generally expensive and unaffordable; a good alternative and timely solution is the utilisation of specialised group of microbes called Microclear. These microorganisms have the abilities to decolourise and transform coloured compounds into simpler and non-hazardous compounds without the use of chemicals. Intensive fundamental studies and also the application of the Microclear at the bench and pilot scale (sequential 1000 L and 2000 L) reactors to treat real wastewater were carried out. The microbes can also be applied directly into the existing treatment plant or ponding systems without the use of a commercial reactor. . Under the UTM-MTDC symbiosis program, Microclear Sdn. Bhd. was set up and work is in progress for large scale production of microbes to treat real textile wastewater in a demo plant of 150,000 L capacity located at the textile industry.


2018 ◽  
Vol 23 (1) ◽  
Author(s):  
Renata Hack ◽  
Cláudia Hack Gumz Correia ◽  
Ricardo Antônio de Simone Zanon ◽  
Sérgio Henrique Pezzin

ABSTRACT Natural graphite is an inexpensive and abundant source to obtain graphene nanosheets. The most efficient method for large-scale production is the chemical method, which is based on the oxidation of natural graphite. This paper reports the synthesis and characterization of graphene obtained by the Hummers method with some modifications. The results indicate a high degree of graphite oxidation, proving that the process was efficient. Analyses of field emission scanning electron microscopy (FEG), transmission electron microscopy (TEM), Raman spectroscopy, thermogravimetric analysis (TGA) and X-ray diffraction showed that the graphene produced presented characteristics similar to the commercial graphene.


1998 ◽  
Vol 13 (10) ◽  
pp. 2950-2955 ◽  
Author(s):  
Yong Dong Jiang ◽  
Zhong Lin Wang ◽  
Fuli Zhang ◽  
Henry G. Paris ◽  
Christopher J. Summers

A forced hydrolysis technique is used for preparing Y2O3: Eu3+ powders at low processing temperatures. The technique uses yttrium oxide, europium oxide, and nitric acid and urea, and has the potential for large-scale production for industrial applications. Several experimental conditions have been examined to optimize the luminescence efficiency. The best result was found to be at 2 mol% Eu doping and a 2 h firing of 1400 °C. Microstructural information provided by x-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) have been applied to interpret the observed luminescent properties.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Jiang Zhu ◽  
Haitao Ni ◽  
Chunyan Hu ◽  
Yuxiang Zhu ◽  
Jinxia Cai ◽  
...  

With the promising potential application of Ag/graphene-based nanomaterials in medicine and engineering materials, the large-scale production has attracted great interest of researchers on the basis of green synthesis. In this study, water-soluble silver/graphene oxide (Ag/GO) nanomaterials were synthesized under ultrasound-assisted conditions. The structural characteristics of Ag/GO were confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy and energy dispersion spectroscopy, respectively. The results showed the silver particles (AgNPs) obtained by reduction were attached to the surface of GO, and there was a strong interaction between AgNPs and GO. The antibacterial activity was primarily evaluated by the plate method and hole punching method. Antibacterial tests indicated that Ag/GO could inhibit the growth of Gram-negative and Gram-positive bacteria, special for the Staphylococcus aureus .


Sign in / Sign up

Export Citation Format

Share Document