scholarly journals Wilson disease: intersecting DNA methylation and histone acetylation regulation of gene expression in a mouse model of hepatic copper accumulation

Author(s):  
Gaurav V. Sarode ◽  
Kari Neier ◽  
Noreene M. Shibata ◽  
Yuanjun Shen ◽  
Dmitry A. Goncharov ◽  
...  
2021 ◽  
Author(s):  
Gaurav V. Sarode ◽  
Kari Neier ◽  
Noreene M. Shibata ◽  
Yuanjun Shen ◽  
Dmitry A Goncharov ◽  
...  

AbstractThe pathogenesis of Wilson disease (WD) is multi-factorial, involving hepatic and brain copper accumulation due to pathogenic variants affecting the ATP7B gene and downstream epigenetic and metabolic mechanisms. Prior DNA methylation investigations in human WD liver and blood and in a WD mouse model revealed an epigenetic signature of WD, including alterations in the histone deacetylase HDAC5. To test the hypothesis that histone acetylation is altered with respect to copper overload and aberrant DNA methylation in WD, we investigated class IIa histone deacetylases (HDAC4 and HDAC5) and H3K9/H3K27 histone acetylation in the Jackson Laboratory toxic milk (tx-j) mouse model of WD compared to C3HeB/FeJ (C3H) control in response to 3 treatments: 60% kcal fat diet (HFD), D-penicillamine (PCA, copper chelator), and choline (methyl group donor). HDAC5 levels significantly increased in 9-week tx-j livers after 8 days of HFD compared to chow. In 24-week tx-j livers, HDAC4/5 levels were reduced 5- to 10-fold compared to C3H likely through mechanisms involving HDAC phosphorylation. HDAC4/5 levels were also affected by disease progression and accompanied by increased acetylation. PCA and choline partially restored HDAC4, HDAC5, H3K9ac, and H3K27ac levels to that of CH3 liver. Integrated RNA and chromatin immunoprecipitation sequencing analyses revealed genes regulating energy metabolism and cellular stress/development were, in turn, regulated by histone acetylation in tx-j mice compared to C3H, with Pparα and Pparγ among the most relevant targets. These results suggest dietary modulation of class IIa HDAC4/5, and subsequent H3K9/H3K27 acetylation/deacetylation, can regulate gene expression in key metabolic pathways in the pathogenesis of WD.Significance StatementWilson disease is considered a monogenic disease caused by pathogenic variants in the ATP7B copper transporter, resulting in hepatic and brain copper accumulation. Given the lack of genotype-phenotype correlation, evidence of epigenetic and metabolic mechanisms regulating phenotype in patients and in animal models could explain the high phenotype variability observed in WD. In this study, we identify class IIa histone deacetylases as players involved in the epigenetic regulation of key metabolic pathways that can affect WD severity as well as targets sensitive to dietary modulations, which is an important characteristic for designing effective and feasible therapies. Understanding the epigenetic mechanisms in WD pathogenesis contributes to a better understanding of the phenotypic variability in WD and other common liver conditions.


Epigenetics ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. 286-296 ◽  
Author(s):  
Valentina Medici ◽  
Noreene M Shibata ◽  
Kusum K Kharbanda ◽  
Mohammad S Islam ◽  
Carl L Keen ◽  
...  

The Nucleus ◽  
2021 ◽  
Author(s):  
Gaurab Aditya Dhar ◽  
Shagnik Saha ◽  
Parama Mitra ◽  
Ronita Nag Chaudhuri

2018 ◽  
Vol 4 (11) ◽  
pp. eaau6986 ◽  
Author(s):  
Lu Wang ◽  
Patrick A. Ozark ◽  
Edwin R. Smith ◽  
Zibo Zhao ◽  
Stacy A. Marshall ◽  
...  

The tet methylcytosine dioxygenase 2 (TET2) enzyme catalyzes the conversion of the modified DNA base 5-methylcytosine to 5-hydroxymethylcytosine. TET2 is frequently mutated or dysregulated in multiple human cancers, and loss of TET2 is associated with changes in DNA methylation patterns. Here, using newly developed TET2-specific antibodies and the estrogen response as a model system for studying the regulation of gene expression, we demonstrate that endogenous TET2 occupies active enhancers and facilitates the proper recruitment of estrogen receptor α (ERα). Knockout of TET2 by CRISPR-CAS9 leads to a global increase of DNA methylation at enhancers, resulting in attenuation of the estrogen response. We further identified a positive feedback loop between TET2 and ERα, which further requires MLL3 COMPASS at these enhancers. Together, this study reveals an epigenetic axis coordinating a transcriptional program through enhancer activation via DNA demethylation.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Levi Evans ◽  
Bradley Ferguson

Abstract Objectives Epigenetic modifications regulate gene expression without changing DNA sequence and are reversible, highlighting their therapeutic potential for heart failure. Recent evidence suggests that food compounds can reverse these stress-induced epigenetic modifications, yet few studies have characterized their role as epigenetic regulators of heart health. Our objective tested the hypothesis that Emodin, an Antraquinone found in rhubarb, blocked pathological cardiac hypertrophy via acetyl-histone-mediated gene expression changes. Methods To test this hypothesis, neonatal rat ventricular myocytes (NRVMs) were stimulated with phenylephrine (PE, 10 μM) to induce receptor-mediated pathological cardiac hypertrophy in the absence or presence of vehicle control or Emodin (10 μM) for 48 hours. Cells were subsequently 1) fixed for immunostaining and cell size quantification, 2) lysed for protein to assess HDAC activity and histone acetylation or 3) lysed for RNA to analyze transcriptome–wide changes in gene expression. A minimum of three experiments with an n = 3/group was performed and data quantified. One-way ANOVA with Tukey's post-hoc was performed unless otherwise specified. p < 0.05 was considered significant. Results Emodin significantly blocked PE-induced hypertrophy. Emodin significantly inhibited HDAC activity concomitant to increased histone acetylation. Lastly, Emodin reversed stress-induced changes in gene expression. Conclusions Our data suggest that Emodin inhibited pathological cardiac hypertrophy via acetyl-histone dependent regulation of gene expression. While animal studies are currently underway to examine the epigenetic actions for emodin in cardiac protection, our results support the role for food compounds like Emodin as epigenetic regulators of heart health. Funding Sources This work is supported by the USDA NIFA (Hatch-NEV00727), the Dennis Meiss & Janet Ralston Fund for Nutri-epigenetic Research and by the National Institute for General Medical Sciences (NIGMS) of the NIH (P20 GM130459) to B.S.F. Core facilities used for Research were supported by NIGMS of the NIH (P20 GM103554).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mi Kyoung Seo ◽  
Jung Goo Lee ◽  
Sung Woo Park

AbstractEarly life stress (ELS) causes long-lasting changes in gene expression through epigenetic mechanisms. However, little is known about the effects of ELS in adulthood, specifically across different age groups. In this study, the epigenetic modifications of p11 expression in adult mice subjected to ELS were investigated in different stages of adulthood. Pups experienced maternal separation (MS) for 3 h daily from postnatal day 1 to 21. At young and middle adulthood, behavioral test, hippocampal p11 expression levels, and levels of histone acetylation and methylation and DNA methylation at the hippocampal p11 promoter were measured. Middle-aged, but not young adult, MS mice exhibited increased immobility time in the forced swimming test. Concurrent with reduced hippocampal p11 levels, mice in both age groups showed a decrease in histone acetylation (AcH3) and permissive histone methylation (H3K4me3) at the p11 promoter, as well as an increase in repressive histone methylation (H3K27me3). Moreover, our results showed that the expression, AcH3 and H3Kme3 levels of p11 gene in response to MS were reduced with age. DNA methylation analysis of the p11 promoter revealed increased CpG methylation in middle-aged MS mice only. The results highlight the age-dependent deleterious effects of ELS on the epigenetic modifications of p11 transcription.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Yahui Shi ◽  
Jinfen Wei ◽  
Zixi Chen ◽  
Yuchen Yuan ◽  
Xingsong Li ◽  
...  

Background. Cancer cells undergo various rewiring of metabolism and dysfunction of epigenetic modification to support their biosynthetic needs. Although the major features of metabolic reprogramming have been elucidated, the global metabolic genes linking epigenetics were overlooked in pan-cancer. Objectives. Identifying the critical metabolic signatures with differential expressions which contributes to the epigenetic alternations across cancer types is an urgent issue for providing the potential targets for cancer therapy. Method. The differential gene expression and DNA methylation were analyzed by using the 5726 samples data from the Cancer Genome Atlas (TCGA). Results. Firstly, we analyzed the differential expression of metabolic genes and found that cancer underwent overall metabolism reprogramming, which exhibited a similar expression trend with the data from the Gene Expression Omnibus (GEO) database. Secondly, the regulatory network of histone acetylation and DNA methylation according to altered expression of metabolism genes was summarized in our results. Then, the survival analysis showed that high expression of DNMT3B had a poorer overall survival in 5 cancer types. Integrative altered methylation and expression revealed specific genes influenced by DNMT3B through DNA methylation across cancers. These genes do not overlap across various cancer types and are involved in different function annotations depending on the tissues, which indicated DNMT3B might influence DNA methylation in tissue specificity. Conclusions. Our research clarifies some key metabolic genes, ACLY, SLC2A1, KAT2A, and DNMT3B, which are most disordered and indirectly contribute to the dysfunction of histone acetylation and DNA methylation in cancer. We also found some potential genes in different cancer types influenced by DNMT3B. Our study highlights possible epigenetic disorders resulting from the deregulation of metabolic genes in pan-cancer and provides potential therapy in the clinical treatment of human cancer.


Sign in / Sign up

Export Citation Format

Share Document