Effects of physical barrier on seawater intrusion and nitrate accumulation in upstream aquifers

Author(s):  
Qiguo Sun ◽  
Tianyuan Zheng ◽  
Xilai Zheng ◽  
Marc Walther
2017 ◽  
Vol 549 ◽  
pp. 416-427 ◽  
Author(s):  
Antoifi Abdoulhalik ◽  
Ashraf Ahmed ◽  
G.A. Hamill

Author(s):  
Qiguo Sun ◽  
Tianyuan Zheng ◽  
Xilai Zheng ◽  
Marc Walther

The subsurface barrier is one of various engineering measures used to prevent seawater intrusion in coastal regions which has been widely applied. However, its two common types, the cut-off wall and the subsurface dam, are both found to cause nitrate (NO3-) accumulation in landward aquifers. In this study, numerical simulations were conducted to investigate the mechanism of NO3- accumulation caused by the two types of subsurface barriers, as well as the influence of several key parameters, i.e. the infiltration NO3- concentration, the inflow DOC concentration, the barrier height and the barrier location on the performance of the subsurface barriers. The results showed that the cut-off wall generally requires a large height to ensure a satisfactory seawater prevention effectiveness, and it is more likely to cause NO3- accumulation compared to a subsurface dam. On the other hand, despite the subsurface dam may not result in the significant increase of NO3- concentration in groundwater upstream, it cannot be applied to the areas where SI has occurred due to the residual seawater problem. Moreover, the construction of a cut-off wall results in a stagnation zone appeared at the upper corner of the barrier, where accumulated NO3- significantly. With the increase of the barrier height, the stagnation zone expanded, leading to further increase of mean NO3- concentration in the landward aquifer. Since the construction of a subsurface dam will not generate such a zone, the subsurface dam generally has little impact on NO3- accumulation.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 341
Author(s):  
Priusha Ravipati ◽  
Bice Conti ◽  
Enrica Chiesa ◽  
Karine Andrieux

Dermatillomania or skin picking disorder (SPD) is a chronic, recurrent, and treatment resistant neuropsychiatric disorder with an underestimated prevalence that has a concerning negative impact on an individual’s health and quality of life. The current treatment strategies focus on behavioral and pharmacological therapies that are not very effective. Thus, the primary objective of this review is to provide an introduction to SPD and discuss its current treatment strategies as well as to propose biomaterial-based physical barrier strategies as a supporting or alternative treatment. To this end, searches were conducted within the PubMed database and Google Scholar, and the results obtained were organized and presented as per the following categories: prevalence, etiology, consequences, diagnostic criteria, and treatment strategies. Furthermore, special attention was provided to alternative treatment strategies and biomaterial-based physical treatment strategies. A total of six products with the potential to be applied as physical barrier strategies in supporting SPD treatment were shortlisted and discussed. The results indicated that SPD is a complex, underestimated, and underemphasized neuropsychiatric disorder that needs heightened attention, especially with regard to its treatment and care. Moreover, the high synergistic potential of biomaterials and nanosystems in this area remains to be explored. Certain strategies that are already being utilized for wound healing can also be further exploited, particularly as far as the prevention of infections is concerned.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1952
Author(s):  
Subrata Halder ◽  
Lingaraj Dhal ◽  
Madan K. Jha

Providing sustainable water supply for domestic needs and irrigated agriculture is one of the most significant challenges for the current century. This challenge is more daunting in coastal regions. Groundwater plays a pivotal role in addressing this challenge and hence, it is under growing stress in several parts of the world. To address this challenge, a proper understanding of groundwater characteristics in an area is essential. In this study, spatio-temporal analyses of pre-monsoon and post-monsoon groundwater-levels of two coastal aquifer systems (upper leaky confined and underlying confined) were carried out in Purba Medinipur District, West Bengal, India. Trend analysis of seasonal groundwater-levels of the two aquifers systems was also performed using Mann-Kendall test, Linear Regression test, and Innovative Trend test. Finally, the status of seawater intrusion in the two aquifers was evaluated using available groundwater-quality data of Chloride (Cl−) and Total Dissolve Solids (TDS). Considerable spatial and temporal variability was found in the seasonal groundwater-levels of the two aquifers. Further, decreasing trends were spotted in the pre-monsoon and post-monsoon groundwater-level time series of the leaky confined and confined aquifers, except pre-monsoon groundwater-levels in Contai-I and Deshpran blocks, and the post-monsoon groundwater-level in Ramnagar-I block for the leaky confined aquifer. The leaky confined aquifer in Contai-I, Contai-III, and Deshpran blocks and the confined aquifer in Nandigram-I and Nandigram-II blocks are vulnerable to seawater intrusion. There is an urgent need for the real-time monitoring of groundwater-levels and groundwater quality in both the aquifer systems, which can ensure efficient management of coastal groundwater reserves.


2021 ◽  
Vol 282 ◽  
pp. 111964
Author(s):  
Yun Yang ◽  
Jian Song ◽  
Craig T. Simmons ◽  
Behzad Ataie-Ashtiani ◽  
Jianfeng Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document