Directional solidification of gallium under time-dependent magnetic fields with in situ measurements of the melt flow and the solid-liquid interface

2019 ◽  
Vol 522 ◽  
pp. 221-229 ◽  
Author(s):  
N. Thieme ◽  
M. Keil ◽  
D. Meier ◽  
P. Bönisch ◽  
K. Dadzis ◽  
...  
2005 ◽  
Vol 16 (1-4) ◽  
pp. 107-110
Author(s):  
A. P. Shpak ◽  
O. P. Fedorov ◽  
E. L. Zhivolub ◽  
Y. J. Bersudskyy ◽  
O. V. Shuleshova

2007 ◽  
Vol 56 (6) ◽  
pp. 485-488 ◽  
Author(s):  
Qiang Wang ◽  
Dong-gang Li ◽  
Kai Wang ◽  
Zhong-ying Wang ◽  
Ji-cheng He

2016 ◽  
Vol 16 (1) ◽  
pp. 124-130 ◽  
Author(s):  
M. Trepczyńska-Łent ◽  
E. Olejnik

Abstract Directional solidification of the Fe - 4,3 wt % C alloy was performed with the pulling rate equal to v=83 μm/s. Sample was frozen during solidification to reveal the shape of the solid/liquid interface. Structures eutectic pyramid and spherolitic eutectic were observed. The solidification front of ledeburite eutectic was revealed. The leading phase was identified and defined.


2020 ◽  
Vol 10 (16) ◽  
pp. 5362-5385
Author(s):  
Leila Negahdar ◽  
Christopher M. A. Parlett ◽  
Mark A. Isaacs ◽  
Andrew M. Beale ◽  
Karen Wilson ◽  
...  

Many industrially important chemical transformations occur at the interface between a solid catalyst and liquid reactants. In situ and operando spectroscopies offer unique insight into the reactivity of such catalytically active solid–liquid interfaces.


1991 ◽  
Vol 237 ◽  
Author(s):  
Richard D. Robinson ◽  
Ioannis N. Miaoulis

ABSTRACTThis paper presents a new experimental method to investigate solid-liquid interface morphologies during Zone-Melting-Recrystallization at lower than the typical processing temperatures. Gallium films were used as a substitute for silicon films. In situ preliminary investigation identified three phenomena typically occurring during ZMR of silicon films: a) Transition from planar to dendritic to cellular morphologies was observed for different processing conditions; b) cell period proved to be dependant on scanning velocity; c) instabilities at the solidification interface at low heating strip temperatures were caused by supercooling and optical property variations as the material changed phase.


Sign in / Sign up

Export Citation Format

Share Document