Numerical simulation of CVDZnSe gas flow pattern and experimental study on optical properties

2020 ◽  
Vol 546 ◽  
pp. 125779
Author(s):  
Hai Yang ◽  
Li Guo ◽  
Naiguang Wei ◽  
Jinji Li ◽  
Zhirui Tian ◽  
...  
2011 ◽  
Vol 233-235 ◽  
pp. 701-706
Author(s):  
Bing Tao Zhao ◽  
Yi Xin Zhang ◽  
Kai Bin Xiong

The numerical simulation of the fluid flow is presented by CFD technique to characterize the flow pattern of cyclone spray scrubber. In this process, the Reynolds-averaged Navier-Stokes equations with the Reynolds stress turbulence model (RSM) for fluid flow are solved by use of the finite volume method based on the SIMPLE pressure correction algorithm in the fluid computational domain. According to the computational results, the tangential velocity, axial velocity and turbulence intensity of the gas flow are addressed in the different flowrate. The results indicate that the CFD method can effectively reveal the mechanism of gas flow in the cyclone spray scrubber.


2020 ◽  
Vol 2020 (3) ◽  
pp. 54-63
Author(s):  
O.D. Ihnatev ◽  
◽  
H.M. Shevelova ◽  

This article is devoted to a numerical simulation of the flow in a jet mill ejector equipped with a gas flow control element. This element is a channel wherefrom an additional gas flow enters the accelerating tube of the ejector. The gas flows in the mill ejector are controlled using the energy of additional gas flows, thus increasing the velocity of the main flow at the outlet of the ejector accelerating tube and producing a protective layer around the tube walls to prevent their wear. At the same time, there is no substantiation for the choice of optimal control parameters, a methodology, or scientific methods for gas flow control in the ejector channels. The purpose of this work is to investigate the effect of the location of the gas flow control element on gas-dynamic ejector performance and the flow pattern in the ejector channels. A numerical study was carried out using the Ansys Fluent software package and the SST k-? turbulence model. In the course of the study, the pressure of the additional gas flow and the distance from the accelerating tube inlet to the energy carrier supply channel were varied. The angle of the additional gas flow was 20 ?. The numerical simulation gave flow patterns in the ejector as a function of the location of the gas flow control element. Streamlines of the additional gas flow were constructed. The article presents the average flow velocity at the accelerating tube outlet and the energy carrier flow rate as a function of the pressure of the additional flow of the energy carrier and the location of the gas flow control element and the maximum values of the average outlet velocity for given pressure ranges. The article substantiates the choice of the gas flow control parameters that maximize the velocity of the mixed flow at the accelerating tube outlet at a minimum gas flow rate. The results may be used in improving material processing technologies.


1996 ◽  
Vol 34 (11) ◽  
pp. 125-132 ◽  
Author(s):  
Baozhen Wang ◽  
Wenyi Dong ◽  
Jinlan Zhang ◽  
Xiangdong Cao

The results of an experimental study conducted in a full-scale high rate pond system treating piggery wastewater at Jianfengshan Piggery, Panyu City, Guandong Province, are presented. The system consists of two advanced anaerobic ponds (AAP) in parallel, followed by an anaerobic transformation pond (ATP) and a five-cell algae-bacterial pond (ABP). The mechanism of the AAP is described and the hydraulic flow pattern analyzed. Fermentation pits (FP) built on the bottom performed very efficiently, operating like UASB in principle. A new concept of ATP is advanced, based on its ability to transform poorly degradable materials to more easily degradable ones. It was found in the study that the HRP system was more efficient, more reliable and saved 40% land area compared with a conventional pond system. Economic analyses of both the energy consumption and the benefit to the pond system of fish farming are also included in the paper.


Sign in / Sign up

Export Citation Format

Share Document