CFD Numerical Simulation and Analysis of the Exhaust Gas Flow Pattern

Author(s):  
Rong Tan ◽  
Lijun Liang ◽  
Chengming Xing ◽  
Xiang Zhou ◽  
Wenbiao Wang
Author(s):  
Xueqing Shi ◽  
Daniel (Jian) Sun ◽  
Ying Zhang ◽  
Jing Xiong ◽  
Zhonghua Zhao

Transportation has become one of the primary sources of urban atmospheric pollutants and it causes severe diseases among city residents. This study focuses on assessing the pollutant dispersion pattern using computational fluid dynamics (CFD) numerical simulation, with the effect and results validated by the results from wind tunnel experiments. First, the wind tunnel experiment was carefully designed to preliminarily assess the flow pattern of vehicle emissions. Next, the spatiotemporal distribution of pollutant concentrations around the motor vehicle was modeled using a CFD numerical simulation. The pollutant concentration contours indicated that the diffusion process of carbon monoxide mainly occurred in the range of 0−2 m above the ground. Meanwhile, to verify the correctness of the CFD simulation, pressure distributions of seven selected points that were perpendicular along the midline of the vehicle surface were obtained from both the wind tunnel experiment and the CFD numerical simulation. The Pearson correlation coefficient between the numerical simulation and the wind tunnel measurement was 0.98, indicating a strong positive correlation. Therefore, the distribution trend of all pressure coefficients in the numerical simulation was considered to be consistent with those from the measurements. The findings of this study could shed light on the concentration distribution of platoon-based vehicles and the future application of CFD simulations to estimate the concentration of pollutants along urban street canyons.


2011 ◽  
Vol 233-235 ◽  
pp. 701-706
Author(s):  
Bing Tao Zhao ◽  
Yi Xin Zhang ◽  
Kai Bin Xiong

The numerical simulation of the fluid flow is presented by CFD technique to characterize the flow pattern of cyclone spray scrubber. In this process, the Reynolds-averaged Navier-Stokes equations with the Reynolds stress turbulence model (RSM) for fluid flow are solved by use of the finite volume method based on the SIMPLE pressure correction algorithm in the fluid computational domain. According to the computational results, the tangential velocity, axial velocity and turbulence intensity of the gas flow are addressed in the different flowrate. The results indicate that the CFD method can effectively reveal the mechanism of gas flow in the cyclone spray scrubber.


2020 ◽  
Vol 1 (103) ◽  
pp. 5-17
Author(s):  
A. Ghofur ◽  
H. Isworo ◽  
R. Subagyo ◽  
M. Tamjidillah ◽  
R. Siswanto ◽  
...  

Purpose: The purpose of this study is to analyse the modelling of exhaust gas flow patterns with variations in pressure, number, and shape of filters on the catalytic converter. Design/methodology/approach: The research method used is a simulation using ANSYS, which starts by creating a converter catalytic model with pressure variations: (0.5-1.5 atm), number of filters: (2-5), and the form of filter-cut/filter-not-cut. Findings: The decrease in velocity is caused by non-uniform velocity in the exhaust gas flow that occurs when passing through a bend in the filter-cut that serves as a directional flow to create turbulence. Filter-cut type tends to have fluctuating pressure, turbulence flow pattern shape so that contact between filter and exhaust gas is more effective. Based on the analysis of flow patterns, the speed and pressure of the 5 filter-not-cut design at a pressure of 0.5 are the best, while at pressure (1-1.5 atm) the type 5 filter-cut is the best. Research limitations/implications: This study is limited to filter-not-cut and filter-cut types with variations in the number of filters: 2, 3, 4, and 5, and the inlet pressure between 0.5-1 atm. Practical implications: The practical implications of this study are to find a catalytic converter design that has advantages in the effectiveness of exhaust gas absorption. Originality/value: The results show that the filter-not-cut and filter-cut types have the best effectiveness in the number of 5 filters. Filter-not-cut at the pressure of 0.5 atm and filter-cut at pressure (1-1.5 atm).


2020 ◽  
Vol 2020 (3) ◽  
pp. 54-63
Author(s):  
O.D. Ihnatev ◽  
◽  
H.M. Shevelova ◽  

This article is devoted to a numerical simulation of the flow in a jet mill ejector equipped with a gas flow control element. This element is a channel wherefrom an additional gas flow enters the accelerating tube of the ejector. The gas flows in the mill ejector are controlled using the energy of additional gas flows, thus increasing the velocity of the main flow at the outlet of the ejector accelerating tube and producing a protective layer around the tube walls to prevent their wear. At the same time, there is no substantiation for the choice of optimal control parameters, a methodology, or scientific methods for gas flow control in the ejector channels. The purpose of this work is to investigate the effect of the location of the gas flow control element on gas-dynamic ejector performance and the flow pattern in the ejector channels. A numerical study was carried out using the Ansys Fluent software package and the SST k-? turbulence model. In the course of the study, the pressure of the additional gas flow and the distance from the accelerating tube inlet to the energy carrier supply channel were varied. The angle of the additional gas flow was 20 ?. The numerical simulation gave flow patterns in the ejector as a function of the location of the gas flow control element. Streamlines of the additional gas flow were constructed. The article presents the average flow velocity at the accelerating tube outlet and the energy carrier flow rate as a function of the pressure of the additional flow of the energy carrier and the location of the gas flow control element and the maximum values of the average outlet velocity for given pressure ranges. The article substantiates the choice of the gas flow control parameters that maximize the velocity of the mixed flow at the accelerating tube outlet at a minimum gas flow rate. The results may be used in improving material processing technologies.


2020 ◽  
Vol 546 ◽  
pp. 125779
Author(s):  
Hai Yang ◽  
Li Guo ◽  
Naiguang Wei ◽  
Jinji Li ◽  
Zhirui Tian ◽  
...  

Author(s):  
Pengju Huo ◽  
Xiaohong Li ◽  
Yang Liu ◽  
Haiying Qi

AbstractThe influences of loose gas on gas-solid flows in a large-scale circulating fluidized bed (CFB) gasification reactor were investigated using full-loop numerical simulation. The two-fluid model was coupled with the QC-energy minimization in multi-scale theory (EMMS) gas-solid drag model to simulate the fluidization in the CFB reactor. Effects of the loose gas flow rate, Q, on the solid mass circulation rate and the cyclone separation efficiency were analyzed. The study found different effects depending on Q: First, the particles in the loop seal and the standpipe tended to become more densely packed with decreasing loose gas flow rate, leading to the reduction in the overall circulation rate. The minimum Q that can affect the solid mass circulation rate is about 2.5% of the fluidized gas flow rate. Second, the sealing gas capability of the particles is enhanced as the loose gas flow rate decreases, which reduces the gas leakage into the cyclones and improves their separation efficiency. The best loose gas flow rates are equal to 2.5% of the fluidized gas flow rate at the various supply positions. In addition, the cyclone separation efficiency is correlated with the gas leakage to predict the separation efficiency during industrial operation.


Sign in / Sign up

Export Citation Format

Share Document