scholarly journals Infrared properties of interstitial oxygen in homogeneous bulk Si1-XGeX crystals

2021 ◽  
pp. 126128
Author(s):  
Yasutomo Arai ◽  
Yoshifumi Katano ◽  
Koji Tsubaki ◽  
Shigeki Uchida ◽  
Kyoichi Kinoshita
Keyword(s):  
2019 ◽  
Vol 298 ◽  
pp. 59-63 ◽  
Author(s):  
Zheng Cun Zhou ◽  
J. Du ◽  
S.Y. Gu ◽  
Y.J. Yan

The β-Ti alloys exhibit excellent shape memory effect and superelastic properties. The interstitial atoms in the alloys have important effect on their physical and mechanical properties. For the interstitial atoms, the internal friction technique can be used to detect their distributions and status in the alloys. The anelastic relaxation in β-Ti alloys is discussed in this paper. β-Ti alloys possesses bcc (body center body) structure. The oxygen (O) atoms in in the alloys is difficult to be removed. The O atoms located at the octahedral sites in the alloys will produce relaxation under cycle stress. In addition, the interaction between the interstitial atoms and substitute atoms, e.g., Nb-O,Ti-O can also produce relaxation. Therefore, the observed relaxational internal friction peak during the measuring of internal friction is widened. The widened multiple relaxation peak can be revolved into Debye,s elemental peaks in Ti-based alloys. The relaxation peak is associated with oxygen movements in lattices under the application of cycle stress and the interactions of oxygen-substitute atoms in metastable β phase (βM) phase for the water-cooled specimens and in the stable β (βS) phase for the as-sintered specimens. The damping peak height is not only associated with the interstitial oxygen, but also the stability and number of βM in the alloys.


1999 ◽  
Vol 293-295 ◽  
pp. 42-51 ◽  
Author(s):  
S Yamanaka ◽  
Y Fujita ◽  
M Uno ◽  
M Katsura

Physica B+C ◽  
1983 ◽  
Vol 116 (1-3) ◽  
pp. 230-235 ◽  
Author(s):  
G.S. Oehrlein ◽  
J.L. Lindström ◽  
I. Krafcsik ◽  
A.E. Jaworowski ◽  
J.W. Corbett

2009 ◽  
Vol 156-158 ◽  
pp. 211-216 ◽  
Author(s):  
G. Kissinger ◽  
J. Dabrowski ◽  
V.D. Akhmetov ◽  
Andreas Sattler ◽  
D. Kot ◽  
...  

The results of highly sensitive FTIR investigation, ab initio calculations and rate equation modeling of the early stages of oxide precipitation are compared. The attachment of interstitial oxygen to VOn is energetically more favorable than the attachment to On for n  6. For higher n the energy gain is comparable. The point defect species which were detected by highly sensitive FTIR in high oxygen Czochralski silicon wafers are O1, O2, O3, and VO4. Rate equation modeling for I, V, On and VOn with n = (1..4) also yields O1, O2, O3 to appear with decreasing concentration and VO4 as that one of the VOn species which would appear in the highest concentration after RTA.


2021 ◽  
Vol 867 ◽  
pp. 158995
Author(s):  
Dung Van Hoang ◽  
Tu Anh Kieu Le ◽  
Anh Tuan Thanh Pham ◽  
Hanh Kieu Thi Ta ◽  
Ngoc Kim Pham ◽  
...  

1998 ◽  
Vol 58 (21) ◽  
pp. 14296-14304 ◽  
Author(s):  
L. Skuja ◽  
B. Güttler ◽  
D. Schiel ◽  
A. R. Silin
Keyword(s):  

2006 ◽  
Vol 510-511 ◽  
pp. 842-845 ◽  
Author(s):  
Noriko Bamba ◽  
Kentaro Kato ◽  
Toshinori Taishi ◽  
Takayuki Hayashi ◽  
Keigo Hoshikawa ◽  
...  

Langasite (La3Ga5SiO14: denoted by LGS) single crystal is one of the lead free piezoelectric materials with high piezoelectricity that is maintained up to its melting point (1470°C). Although LGS single crystals have usually been grown by Czochralski (CZ) method in oxygen contained atmosphere to prevent evaporation of Ga, they were grown by the vertical Bridgman (VB) method in Ar atmosphere without oxygen, and their properties were evaluated in this work. Transparent and colorless LGS single crystals were successfully obtained without Ga evaporation by the VB method in Ar atmosphere, and their resistivity at room temperature was much higher than that grown by conventional CZ method. Piezoelectric constant d11 of the crystal grown by the VB method was 6 x 10-12 C/N, which was close to that of the crystal grown by CZ method. The colorless transparent LGS single crystal turned to orange and its resistivity decreased by annealing in air. Since an orange-colored transparent LGS single crystal has been grown by conventional CZ method, this indicates that color change and the resistivity decrease of LGS crystal is caused by extra interstitial oxygen atoms in the crystal.


1995 ◽  
Vol 231 (1-2) ◽  
pp. 730-734 ◽  
Author(s):  
S. Yamanaka ◽  
Y. Kashiwara ◽  
M. Miyake

1989 ◽  
Vol 4 (6) ◽  
pp. 1347-1353 ◽  
Author(s):  
T. G. Nieh ◽  
J. Wadsworth ◽  
C. T. Liu

The elastic properties of nickel beryllide have been evaluated from room temperature to 1000 °C. The room temperature modulus is measured to be 186 GPa, which is relatively low by comparison with other B2 aluminides such as NiAl and CoAl. Hardness measurements were carried out on specimens that had compositions over the range from 49 to 54 at. % Be, using both a Vickers microhardness tester and a nanoindentor. It was found that the hardness of NiBe exhibits a minimum at the equiatomic composition. This behavior is similar to that of aluminides of the same crystal structure, e.g., NiAl and CoAl. The effect of interstitial oxygen on the hardness of NiBe has also been studied and the results show that the presence of oxygen in NiBe can cause a significant increase in hardness. It is demonstrated that the hardness increase for the off-stoichiometric compositions is primarily caused by interstitial oxygen and can only be attributed partially to anti-site defects generated in off-stoichiometric compositions. Nickel beryllides appear to have some intrinsic room temperature ductility, as evidenced by the absence of cracking near hardness indentations.


Sign in / Sign up

Export Citation Format

Share Document