Corrosion product of the tantalum-interstitial oxygen-potassium system at 1800 °F (982 °C)

1968 ◽  
Vol 14 (3) ◽  
pp. 315-322 ◽  
Author(s):  
C.W. Hickam
2009 ◽  
Author(s):  
Guanfa Lin ◽  
Yaorong Feng ◽  
Zhenquan Bai ◽  
Jianmin Xiang

2019 ◽  
Vol 298 ◽  
pp. 59-63 ◽  
Author(s):  
Zheng Cun Zhou ◽  
J. Du ◽  
S.Y. Gu ◽  
Y.J. Yan

The β-Ti alloys exhibit excellent shape memory effect and superelastic properties. The interstitial atoms in the alloys have important effect on their physical and mechanical properties. For the interstitial atoms, the internal friction technique can be used to detect their distributions and status in the alloys. The anelastic relaxation in β-Ti alloys is discussed in this paper. β-Ti alloys possesses bcc (body center body) structure. The oxygen (O) atoms in in the alloys is difficult to be removed. The O atoms located at the octahedral sites in the alloys will produce relaxation under cycle stress. In addition, the interaction between the interstitial atoms and substitute atoms, e.g., Nb-O,Ti-O can also produce relaxation. Therefore, the observed relaxational internal friction peak during the measuring of internal friction is widened. The widened multiple relaxation peak can be revolved into Debye,s elemental peaks in Ti-based alloys. The relaxation peak is associated with oxygen movements in lattices under the application of cycle stress and the interactions of oxygen-substitute atoms in metastable β phase (βM) phase for the water-cooled specimens and in the stable β (βS) phase for the as-sintered specimens. The damping peak height is not only associated with the interstitial oxygen, but also the stability and number of βM in the alloys.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 517
Author(s):  
Bin Sun ◽  
Lei Cheng ◽  
Chong-Yang Du ◽  
Jing-Ke Zhang ◽  
Yong-Quan He ◽  
...  

The atmospheric corrosion behavior of a hot-rolled strip with four types (I–IV) of oxide scale was investigated using the accelerated wet–dry cycle corrosion test. Corrosion resistance and porosity of oxide scale were studied by potentiometric polarization measurements. Characterization of samples after 80 cycles of the wet–dry corrosion test showed that scale comprised wüstite and magnetite had strongest corrosion resistance. Oxide scale composed of inner magnetite/iron (>70%) and an outer magnetite layer had the weakest corrosion resistance. The corrosion kinetics (weight gain) of each type of oxide scale followed an initial linear and then parabolic (at middle to late corrosion) relationship. This could be predicted by a simple kinetic model which showed good agreement with the experimental results. Analysis of the potentiometric polarization curves, obtained from oxide coated steel electrodes, revealed that the type I oxide scale had the highest porosity, and the corrosion mechanism resulted from the joint effects of electrochemical behavior and the porosity of the oxide scale. In the initial stage of corrosion, the corrosion product nucleated and an outer rust layer formed. As the thickness of outer rust layer increased, the corrosion product developed on the scale defects. An inner rust layer then formed in the localized pits as crack growth of the scale. This attacked the scale and expanded into the substrate during the later stage of corrosion. At this stage, the protective effect of the oxide scale was lost.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3563
Author(s):  
Mathieu Robineau ◽  
Valérie Deydier ◽  
Didier Crusset ◽  
Alexandre Bellefleur ◽  
Delphine Neff ◽  
...  

Carbon steel coupons were buried in a specific low-pH cement grout designed for radioactive waste disposal and left 6 months in anoxic conditions at 80 °C. The corrosion product layers were analyzed by µ-Raman spectroscopy, XRD, and SEM. They proved to be mainly composed of iron sulfides, with magnetite as a minor phase, mixed with components of the grout. Average corrosion rates were estimated by weight loss measurements between 3 and 6 µm yr−1. Corrosion profiles revealed local degradations with a depth up to 10 µm. It is assumed that the heterogeneity of the corrosion product layer, mainly composed of conductive compounds (FeS, Fe3S4, and Fe3O4), promotes the persistence of corrosion cells that may lead to locally aggravated degradations of the metal. New cement grouts, characterized by a slightly higher pH and a lower sulfide concentration, should then be designed for the considered application.


1999 ◽  
Vol 293-295 ◽  
pp. 42-51 ◽  
Author(s):  
S Yamanaka ◽  
Y Fujita ◽  
M Uno ◽  
M Katsura

Physica B+C ◽  
1983 ◽  
Vol 116 (1-3) ◽  
pp. 230-235 ◽  
Author(s):  
G.S. Oehrlein ◽  
J.L. Lindström ◽  
I. Krafcsik ◽  
A.E. Jaworowski ◽  
J.W. Corbett

2009 ◽  
Vol 156-158 ◽  
pp. 211-216 ◽  
Author(s):  
G. Kissinger ◽  
J. Dabrowski ◽  
V.D. Akhmetov ◽  
Andreas Sattler ◽  
D. Kot ◽  
...  

The results of highly sensitive FTIR investigation, ab initio calculations and rate equation modeling of the early stages of oxide precipitation are compared. The attachment of interstitial oxygen to VOn is energetically more favorable than the attachment to On for n  6. For higher n the energy gain is comparable. The point defect species which were detected by highly sensitive FTIR in high oxygen Czochralski silicon wafers are O1, O2, O3, and VO4. Rate equation modeling for I, V, On and VOn with n = (1..4) also yields O1, O2, O3 to appear with decreasing concentration and VO4 as that one of the VOn species which would appear in the highest concentration after RTA.


Sign in / Sign up

Export Citation Format

Share Document